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Abstract Continuing the study in paper 1  the limit cycle problem for the quadratic system [l ,,_ is discussed in this
1 . . -

paper for the case 0< [ < 5 n< 0 and we prove that the system has at most one limit cycle under certain conditions.
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0 Introduction

Continuing the study of paper 1  we consider the quadratic system of type [l ,._,. Without loss of generali-

ty we may assume that b = — 1 then the system to be considered is taken in the form
ax _ _ 2 2 i{ _ _
T y+0x + Ix” + ny dl—x1+ax ¥y . 1

Asin 1  without loss of generality we fix @ <0. The cases of [ < % O<n<land I<0 n>1 has been con-

sidered in 1 . We now consider the case

1
(IEES S N <0. 2
Assume further that
na* +1<0. 3

System 1 has four singular points O 0 0 N 0 % S, % v, and S, x, y, where vy, <0<y, and

x-coordinates of S; i =1 2 satisfy the equation

Fx = nad+l x+ 0+2na-a x+n-1=0.
Hence N 0% and S, x, y, aresaddles but O 0 O and S, x, y, are antisaddles. O is a focus if 151 <

2 and a node if 151 =2. Thus we only need to discuss |01 <2 since no limit cycles around the node.

The focal values of system 1 ;_,at O 0 0 are
Wiy=-a?2l-1 W,=0 W,=0. 4

Since a <0 and [ < % O is a stable weak focus of order one. It is easy to see that if 6 <O system 1 has no limit
cycles see 1 Th.1 and for 0<d<l O O O becomes to be unstable and a stable limit cycle bifurcates from
O by the Andronov-Hopf-bifurcation. The aim of this article is to prove that system 1 has at most one limit cycle for

all 6>0.

Received date 2004-05-31.
Foundation item Supported by the National Natural Science Foundation of China 19871041 .
Biography Ali. Elamin. M. Saeed born in 1969 — doctorate came from Alzaiem Alazhari University Sudan  Majored in qualitative theory of polyno-

mial differential system. E — mail ALinjnu@ hotmail. com



27 4 2004

1 Main Result

In this section we will prove that under certain conditions system 1 has at most one limit cycle surrounding O .

Lemma 1 System 1 can be reduced to a system of Liénard type

dx d
L=Y T 8x Sry 5
with
¥ _a R «x rx Ry x
x _n |f1 x |l+q g x _lfl x |1+2q
where
R, x = x+ % 2l-1 x+8 &> -ad+1 -6 1—i @ —da-1x= x+2 R, x +ox 0
n n n 0
R, x =— d’a"—dla-1 " - 2aa° -2la-0+a x— o —da+1 E
S o _ 2 2 O 6
ra = xd fi x == 2a -2la-a x- a —fa+1 0
) O
B 2o — aa O
1 24’ ~2la-a O
and a is the unique positive root of aa® = [ +1 a° — n =0.

Proof We use a series transformations as in 5 . Let x =% + ay y =% and dt = o’dt in system 1 . Then

it is reduced to omitting the bars for simplicity

dx d
a:fox +fi vy E%:gox g X y+g x Y 7
with
fox = 0-a x+ l-ax ¥ fi x =—- 2aa° -2la—a x— o’ —Sa+1
g x =ax’+x g x = 2aa-1 x+a g x =aad’ -a.

It is obvious that x = £ with f{ £ =0 is a line without contact for the system 7 unless f; £ =0 also holds.
In the later case x = £ is a straight line solution for system 7 .
a’ - da+1
- 2aa’ -2la -«

So we can restrict our attention to x < £. Note that f; x <0 for x < %.

Because £ = >0 obviously system 7 can only have limit cycles surrounding the origin.

Because limit cycles can not cross the line x = £ it is allowed to apply the transformation n=x £=f, x +

fi x y which changes the system 7 into

d d
£=E £=—¢077—¢1775_¢2’752 8
with
_rn Ry _Ri 7y _ _2la-ad’
¢077_f17] ’7[}177—f177 5b277— f177
where R, 7 R, n r 5 andf, 7 aregivenin 6 .

Finally by the transformation

F=7p yzlfiiqu di=1f, 3 1"di
1
with
_ 2la - aa’
- 2aa” -2la -«
the system 8 is reduced to the Liénard system 5  omitting the bars  where g x  f x are given as above.
Remark 1 WedefineZ = n—n—é\ —% —lasin 1 .
a a

Lemma2 ForO0<d<2 a<0 0<l<% n <0 and « is the positive root of the equation ax’ — [ +1 «°
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- n =0 which corresponds to the critical point at infinity of system 1 . Then
i a°-0a+1>0
i a’-a<0

i dladl—ala-1>0 2a0° -2la-8+a<0 2a’ -2la-—a<0

D) > 0as 1o o - da—1<0.
Proof We now prove a’a” — ala — [ >0 and the others are similar. Since aa -1 a*a’ - ala =1 = na’
+1<0 we get the result from aa —1<0.
Notice that if [ + n >0 the condition Z > 0 always holds.
Lemma3 2 letf x g x be continuously differentiable functions for &y < x < k, where k;, <0< £,
such that for &, < x < k, the following conditions are satisfied

i gx >0 <0 forx>0 <0
il there exists a x, such that /' xy =0and f x >0 <0 for x > x, <,

iii ng is an increasing function both for x <0 and for x > x,,.
Then the Liénard system 5 has at most one periodic orbit. If exists it must be a limit cycle with negative char-

acteristic exponent.

Theorem For n<0 0<lI< 1 and 1- % o’ —8a—1<0 system 1 has at most one limit cycle and if

2

exists it has a negative characteristic exponent.
Proof It will be shown that for system 5 with above conditions by using Lemma 2 all the conditions of

Lemma 3 are satisfied.
. a
Let us take the nonzero root of r x =0 as x = T >0.
Some elementary calculations show that

R, 0 :%a2—3a+1 <0 RO =— & —da+1 <0

) " —Sfa+1 20-1 o .
R, £ = Yok — e - o2 ;2 >0 R2x=21—aa >0

2
a
x - £ = 22 > 0.
n 2aa” - 2la - a

In the following we will denote x, as the smallest root of R, x =0 y
and x, as the smallest root of R, x =0 then we get the Fig.1.
By taking &k, = — © k, = x, from above discussion and Fig.1 the
conditions i and ii of Lemma 3 are satisfied. Then we need only to ’\
check the condition iii . 0 - :\ x
&
Consider / * \\
La lfi o |7 Ry + g () (/) R (x) Ri(x)
g x xR, x v+ %R, x glx) flx
x |f ¥ 210(_0012 Rl x . Fig.1 Picturesof f x g x
VA X +
g x fi x xR, «x . % R, x

a
oR, x + X+ R, «x

, MRy x R, x —xR’, x R, x —R, x R, »
+1f; x| >
xRy «x

a 22
x+— "R; «x
n

Simplifying we obtain
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fx -c —6&2—6a+1+ R, x u «
g x

= 2
a o xR, x a 2
X+ R, «x 2 xx+;f1xR2x

where v ¥ = 2la—aa® R, x —f x R, «x
Forx€ - 0 U x, x, wegetx+%<0 fi x <0 R, x <0 xR, x >0and ¢ >0. Thus it is

enough to show that u x >0. v/ ¥ = a’-a R, x +2 a’a" —ala-1 f, x <O. since R, x >0
fi * <0 aad’—a<0and a’a’ - ala — >0 the condition iii is satisfied. The proof is complete.

Remark 2 As pointed in 1 and 3  the number of limit cycles around O depends upon the separatrix cycle
outside O passing through S, or N. If the separatrix cycle passing through S, see Fig.2  denoted by Hoc S,
which is stable since div |52 <0 and has the same stability with the limit cycle created from O  which corresponds
the uniqueness case we have proved in the theorem see also 4  and now the case n <0 was not discussed in 2 .
But some times the separatrix cycle is formed passing through N see Fig.3 . For example as a [ fixed and | n|
big enough then appears the case. Since div |y >0 the Hoc N must be formed for certain 6 * > 0 with the stable
limit cycle created from O inside. Then as & increases from 6  an unstable limit cycle creates from Hoc N and

we obtain two cycles around O .

N\

d ) :
t?.\ SEAN

Fig.2 Hoc S, Fig.3 Hoc N

N4
N

References

Ali Elamin M Saeed ILuo Dingjun. Limit Cycle Problem of Quadratic System of Type. [l ,,.o I  to appear .
Coppel W A. A new class of quadratic system J . J Diff Eqs 1991 92 2 360—370.

3 Luo Dingjun. Limit Cycle Bifurcation of Planar Vector Fields with Several Parameters and Applications J . Ann of Diff Eqs 1985
11 91—10s.

4 Sun Jianhua. Uniqueness and Bifurcation of Limit Cycles for Quadratic System [l ,_, O0<n<1 J . Ann of Diff Egs 1992
8 4 463—468.

5 Ye Yangian. Qualitative Theory of Polynomial Systems M . Shanghai Shanghai Scientific & Technical Publishers 1995.

|| I I

210097

0<1<% n<0 Il



