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Limit Cycle Problem for
a Non-Liénard Type Cubic System

Ali M Luo Dingjun

School of Mathematics and Computer Science Nanjing Normal University 210097 Nanjing China

Abstract In this paper we discuss the limit cycle problem for a non-Liénard type cubic system. Firstly for quadratic
case we find an example to show the sufficiency about the center conditions. Secondly we prove the uniqueness of limit
cycles by translating the system to Liénard type and by using the related uniqueness theorem of limit cycles. Lastly we
show that the cubic system may have at least two limit cycles by using the generalized Hopf bifurcation theorem.

Key words cubic system quadratic system uniqueness of limit cycles bifurcation

CLC number 0175.12  Document code A Article ID 1001-4616 2005 04-0008-05

Liénard

210097

Liénard
Liénard
Hopf

0 Introduction

In paper 1 and 2  we studied a non-Liénard type cubic system

%:—y+cx+ax2+bx3 dl=x+cy 1

de
and proved the uniqueness of limit cycles. For system 1  the second equation has no nonlinear term. We now
consider the case with a quadratic term dy” to instead linear term ¢y or equivalently consider the system by ex-
changing x and y
d d
ﬁ:y+ax2 l:—x+cy+by2+dy3. 2
de de

First we consider the simple case that c=d =0 1i.e.

dx _ > dy _ 2

dt-y+ax & x +by". 3
Change the sign of y then system 3 becomes

%:—y+ax2 %—x—byz. 4
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By comparing 4 with the system 12.16 in 3 we geta,y =a by, = —b and other quadratic terms there be-
ing all zeroes. Then it is easy to get

W, =0 W,=6ab a*+b’ da" -b> W, =0. 5
Without loss of generality we may consider a=0 otherwise change y ¢t to -y -t and b=0 otherwise

change x t to —-x -t
The system 4 can be divided into two cases a b both not zero

Case 1 a=b. ltis easy to see the system now is symmetry

with respect to the line y =x and O is a center as shown in Fig. 1. P 2l
There is a homoclinic singular closed orbit I passing through sad- >
dle S with a family of closed orbits inside I'. This system gives a
gap of the conditions of Theorem 9.1 in 3 . We now give the
following conclusion.
Theorem 1 For quadratic system in the form ;x
Q:_x+Ax2+ 2B +a xy +Cy° 6 r
dx y+Bx* + 2C +B xy + Dy’
O is a center if and only if one of the following conditions is satis-
fied
1 a= B =0 Fig.1 Center system
2 A+C=B+D=0
3 A=C=8=0 orB=D=a=0
4 A+C=B=a+5 B+D =BD+2D*+A*=0 B+D#0 orB+D=a=B+5 A+C =AC+2A> +
D’=0 A+C#0
5 A=D=0 IBI=I1Cl 2B+a=2C+B=0.

It gives an improvement of Theorem 9.1 in 3  with the additional condition 5 . Comparing system 4
with system 6 forcaselin 3 B=-a C=-b a=2a B=2b A=D=0. The case does not belong to
the conditions 1 ~4 in Theorem 9.1 there. but belongs to the condition 5 . We think the reason is that Theo-
rem 9.1 only considered the case « ¢ +¢ =8 b+d =0 and missed the case that both sides of the above
equality are not zeroes. The condition 5 is just a supplement to this case.

Case2 a#b. From 5 we know that O is a second order weak focus. For simplicity we may assume a =
1 by rescaling  then consider the case b >a =1 and O is a stable weak focus the case b < a is similar by
exchanging x and y .

Theorem 2 For a#b the system 4 has no limit cycle.

We shall prove it at the end of next section.

1 Quadratic System Case as d =0

Now consider system 2 asd =0 1i.e the system

do _ 2 _ (VAN o
g Cy e =P x y 6 x+ey+by =Q x y . 7

Lemma 1 For system 7 there is no limit cycle around O as a =0.

Proof If a =c=0 then it is easy to see that the system has a family of closed orbits around O. From
9Q P,
P& _pot_
ac ¢ ac Y

we know that 7 forms a rotated vector field with respect to parameter ¢ and then there is no limit cycle for ¢
#0.
Thus we only need to consider the case a70 and as above mentioned we may assume a =1 to consider the
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system

de L2 bl
dt-y+x 6 x +cy +by. 8

For 8 asc¢=0 O is a stable weak focus then by Hopf bifurcation a limit cycle is created from O when ¢
becomes positive. Except the critical point O the x coordinates of other critical points satisfy the cubic equation

bx’ —ex =1 =0. 9

When ¢ <%«3/ 2b there is only one positive root x, of 9  for which S x, x, is a saddle as shown in Fig.2
i when 02%43/ 2b 9 has one or two negative roots and the phase-portrait is shown in Fig.2 ii S, and
S, coincide together as ¢ = %«3/ 2b . lt is easy to see that there is no limit cycle around O at this time. Thus in

the following we only consider the case ¢ < % /2b and ¢ <2 if ¢=2 then there is no limit cycle around O since

O is a node .

Ay Ay
—x+ey+by’=0
wrey by —x+ey+by’=0
0 x >
S
Sy
+5°=0
Y +x'=0 S -

) (i)

Fig.2 Phase-portraits without limit cycle
To prove the uniqueness of this limit cycle we need to translate the system 8 to Liénard type.

Lemma 2 System 8 can be reduced to a system of Liénard type

%:y— x %: -g x 10
with FF x = f: 2bx" —2x —c e "drand g ¥ = —x bx’ —ex -1 e .
Proof letx=x (=y+x" thenwegetx=¢ (= -—w—cx’ +bx' + 200" +2x+c¢ (+b°C. Next let
x=x (=ue” then x=ue” and i= bx' —cx’ —x e "+ —2bx" +2x +¢ wu.
At last letx =x » = u + :) 2bx" - 2x — ¢ e”dx (%l_ = e™™ then we find the following system after
changing v to y and 7 to ¢
% =y - :) 2bx" —2x —¢ e "dx % =x by’ —ex =1 e

which is in the Liénard type 10 with

lx +bc -2 ot _bc -2
b b b’

gx =-x b’ —ex -1 e 11

Fx = j 206" =2x —c e Mdx = - 247 -
0

Denote f x =F' x = 2bx’ -2x—¢ e " and G « :fg x dx.
0

For Liénard system we use the following result about the uniqueness of limit cycles. Suppose that f x
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g x are continuous in

r,r, r<0<r, xg x >0forxe r,r, 270 fx <0 xe x x, andf «x
>0 outside of x € x, x, where r, <x, <0 <x, <r,. By the Filippov transformationz = ¢ x = f g x dx
0

the inverse functions are x, =x, z >0 andx, = x, z

<0 z>0. F, z =F %, z i=12 F«
f f x dx.
0
Lemma 3 * For above f x g x if they also satisfy the following conditions
i there exists z>0 suchthat F| z <F, z 0<z<z F, z >F, z z>z
il is increasing forxe uw r, u=x Z
g x
then the Liénard system 10 has at most one limit cycle in the strip region r, <x <r, - <y< + .
Theorem 3 System 8 has at most one limit cycle.

Proof We now check that after changing system 8 to 10

the conditions above are satisfied. Now

fx = 28" -2x—c e ™ F x

2 2 be=2 . bc-=2
= -2x —?x+ I e " - X
gx =-x b’ —ex—-1 e ™.
We omit the explicit expression of G x since it is not used in the following. The pictures of them are shown in
Fig. 3.
"y
1 ’ Gx)
Ay
. x) Byz)
. Fiiz)
X X X
™ NG 3 \F) i . X
0 : Z- -4
&)

Fig.3 Figures of fix), g{x) Fig.4 Figures of F(z}
g x has a positive zero point x, for which there is a saddle lies on x =x,. The limit cycle locates in the
art of x <x, in which f x has two zeros x, <0 <x, notice that if x, > x, the Lemma still can be used . F «
p 0 1 2 2 0

has no positive zero point as bc=2 and has one positive zero point as bc <2 and has one negative zero point x,.

dF,
Now F'; z Yz jd

I dr then from Fig. 3 we see that

P :fx <0 O0<x<x, P, :fx >0 x <x<0
gx >0 x,<x g x <0 x<x,.

is satisfied as in Fig. 4. @  To check the condition
gx >0and g’ x >0 xe 0 x,
g x = =-2b

Then the condition i it let x; be the zero point of
g x . Forxe 0 «,

and g’ x <0 xe x,
—4by’ +2cx +1 e
20°x" —4bx” —2bex” +2 c—b x+1 e =g, x e

g % =20 %" —4bx® =2bex* +2 c-b x+1

x, see Fig.3.
4
—bxt rex’ +x +

@ Wy=F z andy=F, z donotintersect each other then F, z >F, z and there is no limit cycle
by Theorem 5.4 of 3 . The conclusion is obtained.
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2+bc 20" 42 +2b— 2+bc ¢

= 2bx" =2x—¢ bx’ —-x-— -

2b 2b 2b
2 /
g, X, :_2bb+2 x2+1—2-zbcc sincex2=%>% then
20 +2 1 2 +be 2 2 +be
g x, < - b '?+]— b C:—2—b7+1— b ¢ <0.
That means x; <x,. From Fig.4 we see thatz>z" wu=x, z >x, z° =x,. Forxe ux, =xe x %

v’

=gx >0 fx >0 f/ x >0and g’ x <0 then we get
(fx )’_gvax -fx g «x
gx )~ g x

Thus Theorem 3 has been proved.

>0 xe u x, .

Now as a corollary we give a proof of Theorem 2 i.e. for ¢ =0 system 7 has no limit cycle.
Proof Assume that for ¢ =0 system 7 has a limit cycle with O stable then changing ¢ from zero to ¢ >

0 we get the second limit cycle by Hopf bifurcation which is a contradiction with Theorem 3.

2 Quadratic System Case as d =0

Let d#0 then system 2 as a =1 becomes
dx » dy

oY E:—x+cy+byz+dy3. 12
We now use the formula of focal value in 5 for the system
dw o iy dy SN
m =_wy+;+,z=‘1Fijxyj i wx+i§=‘lGijxyj. 13
and the first focal value of 13 s
1 1
P, =g 3 Fy+Gy +F, +6y o Fiy Fyy+Fyp =Gy Gy +6y, +2 FpGy —FyGy
For system 12 only F), =1 Gy, =b Gy =d and other F; are all zeros w =1 then the focal value is
3
P, =§d.

Theorem 3 For certain parameters b ¢ d the system 12 has at least two limit cycles.

Proof Since from 2 asc¢=d=0 b>1 0 is a stable weak focus of order two. Firstly keep ¢ =0 let
d become positive then O becomes an unstable weak focus of order one and a stable limit cycle L, bifurcates.
Secondly change ¢ to negative with l¢| small enough such that L, does not disappear but O changes its stability

again and an unstable limit cycle L, bifurcates in the interior of L,. The conclusion is obtained.

References

1 Yuan Weili Luo Dingjun. Qualitative study of a non-Liénard type cubic system ] . Journal of Nanjing University Math Bi-
quarterly 2002 19 1 8—17.

2 AliM Luo Dingjun. Qualitative study of a non-Liénard type cubic system J . Annales of Differential Equations 2004
20 4 331—336.

3 Ye Yangian et al. Theory of Limit Cycles M . Providence Amer Math Soc Translation Math Monographs 66 1986.
Luo Dingjun Wang Xian Zhu Deming et al. Bifurcation Theory and Methods of Dynamical Systems M . Singapore
World Scientific Publ Co 1997.

5  Gobber F Willamowski K D. Ljapunov approach to multiple Hopf-bifurcation J . J Math Anal Appl 1979 71 2 333—
350.



