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Study on Instability of Anomalous Viscosity Disk
with Vertical Structure
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Abstract It is well known that accretion disks are hydrodynamic disks with anomalous viscosity. An accretion disk with
vertical structure is studied by using a new anomalous viscosity. There are two kinds of acoustic modes O-mode and I-
mode in the inner disk. Because of the anomalous viscosity the I-mode is always unstable in the inner disk. The verti-
cal structure must be taken into account when the perturbations are high-frequency.
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0 Introduction

As a powerful and attractive theoretical model accretion disks AD are widely believed to be sources of
high-energy radiation for X-ray binaries and active galactic nuclei AGNs . Since the standard thin disk model
was constructed in the early 1970s ' the stability of the disk has become an important area in the theory of
AD. This is because a lot of quasi-periodic variations in X-ray binaries and AGNs are believed to be related to
the instabilities of the disk. Shortly after the publication of Shakura & Sunyaev’ s work the inner region of the
standard thin disk was found to be secularly and thermally unstable >* . The rapid growth of these unstable
modes may result in the breakdown of the thin accretion disk configuration. Subsequently much research was
done concerning the instabilities. Except the thermal mode and the viscous mode there are two acoustic modes
in AD *77  the O-mode propagating outward and the I-mode propagating inward . The O-mode is unstable
throughout the disk white the I-mode is unstable in the outer disk but stable in the inner disk and the instabili-
ty growth rate increases with smaller wavelengths A ° .

The standard thin disk model is usually assumed that the disk is geometrically thin H r <r H is the

thickness of a disk and r is the radius . It involves averaging over the z coordinate of the three-dimensional hy-
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drodynamic equations assuming a number of additional conditions to be fulfilled ' ® . However the thin disk
model imposes a restriction on wavelength A>>h h is the half-thickness of a disk  and therefore it is necessa-
1y to consider AD z-structure for correct treatment when A <h ° .

It is well known that AD are hydrodynamic disks with anomalous turbulent viscosity the viscosity of matter
in disk results in a factor of more than 10® amplification to the microscopic viscosity. But we know little about
turbulent viscosity and usually we take standard o model » =aC H ' . The anomalous viscosity has disturbed
the astrophysicists for a long time until recently it is resolved by Li & Zhang ° . Their work has shown that the
magnetic fields self-generated by the transverse plasmas are modulationally unstable in the Lyapunov sense lead-
ing to a self-similar collapse of the magnetic flux and resulting in local magnetic structures. Highly spatially inter-
mittent flux is responsible for generating the anomalous viscosity. Therefore large-scale magnetic fields heat the
outer parts of the disk while small-scale intermittent flux gives rise to viscosity with radius r and temperature T
dependence. It is these two magnetic processes that determine the stationary structures of AD.

In this paper we investigate the dynamics of acoustic perturbations taking into account the z-structure of a
disk with anomalous viscosity. The main question is the existence of high-frequency instabilities in the inner

disk.

1 Anomalous Magnetic Viscosity

To investigate the structure of the disk we must know the anomalous viscosity 77,,. The anomalous viscosity
has disturbed astrophysicists for a long time and is a rather difficult problem. A solution was suggested recently
by Li & Zhang ° . It is known that the transverse plasmon fields are modulationally unstable in the Lyapunov
sense leading to a self-similar collapse of the magnetic flux. Such collapsing magnetic flux instability is analyzed
in the case of kinetic plasma physics. Based on Vlasov equations and Maxwell equations the collapsing feature
of the self-generated magnetic field from transverse plasmons is investigated on rather small scale of the motion or
electric current in accretion disks as a result the anomalous viscosity due to the intermittent flux occurs.

Here we briefly introduce the calculation processes of the magnetic kinematics viscosity. The magnetic vis-

cous stress tensor by the self-generated spatially intermittent flux is
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where n; , =n,,| 8,05 +06,8; - 3 50-8,,{) and 7,, is magnetic viscosity of the intermittent flux defined through the
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kinetic coefficient as n,, =%, , [#k no summation over repeated [k .

In the accretion disks the shear stress tensor V,, has the dominant r¢o-component and then 4 becomes

m_p L0 v\ _ 1 a0
tij—ﬂijwz(ar‘r)—"iwzr ar 5
with 2= "¢, Furthermore it yields from 1 and 5  that
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It is assumed that self-generated magnetic fields by the transverse modes are statistically isotropic on the scales of
interest
L 5B ~ sBsB 7
3 o ~ 0B,6B,

In this case 5 and 7  combined with a self-similar solution for the collapse magnetic flux °
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mean that the magnetic kinematics viscosity v can be read as
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2 Model and Basic Equations

Now we consider an axisymmetric differentially rotating gas disk in the gravitational field of a mass M. With-

out including self-gravity and relativistic effects and adopting cylindrical coordinates we have
b o O GW L ;

rz
2 2 T
r +z 2

G is the gravitational constant (), = /% is the Keplerian angular velocity. If the disk is Keplerian we can get
r

fo = r’pvl), 10
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where p is the volume density of matter in the disk. According to @ model ' we take the new anomalous viscosi-
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where the subscript i’ signifies the values taken at the inner edge of the disk.

ty9

We use the axisymmetric hydrodynamic equations with cylindrical coordinates. The equations of motion and
continuity have the form

u  du ou v 1P ¥
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where P is the pressure V= u v w is the velocity.
We take Khoperskov & Khrapov' s method *  add the thermal equation to the system of Eqs. 12 — 15
— 5 —
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as

ds
pria 16
where S is the entropy () defines the sources of heat.
When we investigate the equilibrium of the disk we still adopt the model developed by Khoperskov &
Khrapov * . It is assumed that the equilibrium velocity in the thin disk has only r and ¢ components V, = U,

2
za(%) . The pressure and density have the form

V, 0 and usually we have

0
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With these conditions and assumptions the equilibrium equations are defined by
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defines the adiabatic sound speed v is the adiabatic index . And from now on we choose n =y =5/3 soa=

5/2 b =3/2. Then we obtain the equilibrium velocities
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3 Linear Analysis

In the framework of the standard linear analysis the pressure density and velocity are represented as
u=U, rz +urzt v=Vyrz +vrzt w=wrzt
P=Pyrz +Przt p=p,rz +przt.
In the linear approximation |y|<ly,| and after neglecting some higher order perturbed terms we obtain

linear perturbed equations as follows
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As we study only the dynamics of acoustic instability we set Q =0 * . The thermal equation becomes
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where S :cvln(o) is the entropy of the gas at equilibrium. On the other hand
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where ¢, and ¢, are the specific heats at constant density and pressure * . We set ¢, =¢, then obtain from
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The short-wave approximation in the radial direction kr>>1 Fk is the radial wave number allows writing

the solution as
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where w is frequency. Taking into account 33  the perturbed equations become
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By setting the determinants of the coefficients in Eqs. 34 — 38 equal to zero we get a dispersion equa-

tion
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4 Numerical Results and Discussions

If we set W=w/(), W is dimensionless frequency K =hk K is dimensionless wave number R =r/r, Z =z/
v, 1+ 21Uy |+ 2 ., 1 ) . . . .
h D=h/r=0.05 and N = R3 =—| —|R¥="—aD R? the dimensionless dispersion equation is
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WhereA:5— (W+%N) F Z =1-27 Because a<1' wetake N=0.4x107*R%. We investigate the
e
instability of the inner disk with z-structure so we choose R=2 Z=0 0.5 0.9. We use W= —iA - I;N get
the dimensionless frequency and a positive imaginary part of W means that the mode is unstable. The O-mode

propagating outward has a negative real part of W while the I-mode propagating inward has a positive one.
At each point we chosen we find two kinds of acoustic modes O-mode and I-mode and they are all unsta-

ble Fig.1 . Wu & Yang’
disk. So we change R to 1.

found that the I-mode was unstable in the outer disk but turned stable in the inner

Here we just show the situation when Z =0 Fig.2 . The propagating properties
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Fig.1 The relationship between dimensionless frequency W and dimensionless
wave number K to unstable mode with different Z{R=2)
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Fig.2 The relationship between dimensionless frequency W and dimensionless wave number X to I-mode with different R (Z=0)
have no change and the I-mode is unstable although with smaller growth rate. Wu & Yang ° took the o mod-

el so we think the anomalous viscosity ° cause the I-mode always unstable in the inner disk.

In this paper the main question is the existent of the high-frequency acoustic perturbations in the inner disk
with non-homogeneous z-structure. So far we have already found the high-frequency modes. From Fig. 1 we
can clearly find that the vertical structure shouldn’ t be ignored when we discuss the short wavelength perturba-
tions K>3 . But when K <1 the averaging over the z coordinate is still reasonable.

In summary we investigate an accretion disk with non-homogeneous vertical structure and we take the new
anomalous viscosity. We find two unstable acoustic modes in the inner disk O-mode and I-mode. The I-mode is
always unstable because of the anomalous viscosity. When we discuss the high-frequency perturbations we must

consider the vertical structure.
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