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Asymptotic Normality of L, -Estimators

in a Partly Linear Model
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Abstract ; Consider the partly linear model Y = X' B, + g(T) +e, where B is a k x 1 vector of unknown parameters,

g( + ) is an unknown smooth function and e is an unobserved disturbance. A piecewise polynomial g, ( *

to approximate g and the least absolute deviation estimator of 8, is obtained. Under milder conditions the asymptotic dis-

tribution of the estimator of B, is derived.
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0 Introduction

Consider the following partly linear model given by
Y=X'B, +g(T) +e,

(1)

where X' = (x,,--+,x,) and T are explanatory variables, B, is a k x 1 vector of unknown parameters, g( + ) is

an unknown smooth function of T in [0,1] ,e is the random error with median 0, (X,T) and e are independent.

The partially linear model was first introduced in paper [ 1] to study the effect of weather on electricity demand

and further studied by refs. [2,3] ,etc. When EX =0, ref. [3] derived the asymptotic normality of the L, -norm
estimators of B, using the B-spline method. Let { X, = (X, -, X;,)',T,,Y,,(1<i<n)| denote a sample of size

n from (1).In this paper,we use a piecewise polynomial g, to approximate g,then minimize

n

z | Y, _X,iB —gn(Ti) |

=1

to obtain L,-estimators 3 of B,. Under general conditions we show that 3 is asymptotic normal. Morever, compa-

ring to paper [3],our methed is more simple and easier to understand and carry out in practice.

1 Main Results

First we make the following assumptions.
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Al. The distribution of T is absolutely continuous and its density w (¢) satisfies 0 <b<infy_, ., w(t) <
Supgc,cW(t) SB< + .

A2. LetO <y=<1 and 0 <M, g is an m-times continuously differential function such that g™ (1) -
g™ (1)1 <M, —1,1”, for 0<t,,t,<1. Think of p =m +7y as a measure of the smoothness of the function g.

A3. The median of the distribution of random error e is 0,the distribution of e has density f(x) in a neigh-
borhood of 0, f(0) >0 and is continuous at x =0.

A4. EX =0,EXX' = (o), is a positive definite matrix, and X and T are independent.

A4’ EX exists and E(X —EX) (X —EX)' = (0;) ;.4 is a positive definite matrix, and X and T are inde-
pendent.

AS. I‘L‘i"n“X‘ | = Op(n(”'l/z)/(z”“)/logn).

A6. There exist two positive constants ¢, and ¢, such that , f(x) satisfies |f(x) —-f(0) | <c¢,lx| forallx e
[ -c¢,e ]

Given a positive integer M, , we split equally [0,1] into M, subintervals. The length of every subinterval is

2h=1/M,. LetI, =[(v-1)/M,,v/M,) 1<v<sM,-1,I, =[1 ~1/M,,1]. Let d, denote the center of the
interval I, and A(¢) denote a (m +1)M, x1 vector such that fortel,,v=1,---,M,,
A(t) =(0,---,0,1,(¢t;,=d,) /b, ,[(t,-d,)/R]",0,--,0),
Set @' = (a;, " ,&ps1s""s Aminyn,) » 82 (1) =A(2) '@ and
@'y =(g(d), - h"g" (d)/m!, -, g(dy,) - h"g"™ (dy,)/m!).
Let

n

1Y, -XB-A(T)'al = xginz 1Y, -X'B-A(T) al, (2)
3 "¢ =1

=1

then we have the following theorems.

Theorem 1 Suppose that A1-A6 hold and that M, ~n""**" and p >3/2. Then

2f(0) (EXX") "/n (B ~Bo)—uN(0,1,).
Theorem 2 Suppose that A1-A3,A4’ AS-A6 hold and that M, ~n"**" and p >3/2. Then

2/(0)(E(X -EX)(X-EX)")"In(B~-By)—N(0,I,).
2 Proofs of the Theorems

Let L, be a sequence of positive numbers satisfying L,— + & ,L,/logn— 0(n— + ®© ) and C(0 <C <
+ o ) denote some constant not depending on n,but which may assume different values at each appearance.

Let Vi = 37 XX',, A" = (A(T,) - ,A(T,)),V; =A’A.Set Z, = V' X, , Z,; = V;'A(T,) ,6, =V, (B -
B).b=V,(a~-0ay), 0 =(0,,0,),Z2',=(Z';,Z',;),and set R, =g(T,) —A(T,) a and D, =
max, ;o ( |R;| +L,M,* | Z; || ). Then

ZZliZ,Ii =1, ZZZiZIZi = I(m+1)M"9 (3)
i=1 i=1
91 = Vl(ﬁ _ﬂo),gz = Vz(& - a). (4)

and by (2)
(B'.a')" = Argming, > 1 g(T,) —A(T) ao + e, - X';(B=By) —A(T) a + A(T,) e, |

Arg min,, g, 2 :'=] | R, +e, -2',,0, -2',,6,

ArgminGZ;l(l R, +e,-Z'0l-I R +e). (5)
Lemma 1 Suppose that A3-AS hold and that D, = 0,(1/logn) and M, ~ n"*Y Then
LM sup | X7 (VR +e, ~LM Z'01 -1 R, +e,1)
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FLMPY " sgn(e)Z'0- Y, E(I R +e - LM 261~ R +el)l=o0,(1),

where E, is the conditional expectation operator given (X, ,7;),-,(X,,T,) and sgn( - ) is the sign function.

Proof See Lemma 3.2 in Shi and Li**.

Lemma 2 Suppose that A1-A5 hold and M, ~n"**"  Then | 8] = OP(M,',/Z).

Proof It suffices to show P{ || § | <L,M.*}— 1. We first show that

D, = 0,(1/logn) =0,(1), nM’’ lrrslianf < C. (6)

Observe that V2 can be denoted by DIAG(B,,,By ), whete B, = (by,) puotyximsty » bug = 3, . L(Ti =
d)/R)" s lhg = 1,2, m 4 Ty o= 1,2, M Let Ay = (4,4) (menywimety s g =

j t”""zw(dv +ht)dt, l,g =1,2,---,m+1,v =1,2,--- M, Since for any £ >0,
le <1
ST PNk Y (T, = d) /R gy —jmqt“q_zw(du +he)del > el
< YT V(EEL Y [T - d,)/h) gy /R —f 42w (d, + he)de] 14
n= i= P 1d <1

< CZ il(nM‘:1 +n’M) /(&' nt) < C/& z ilnv(b”)—z <+mo, (p>3/2).
Then by Borel-Contelli’s lemma and note that 1/h =2M_,we have

2M,
- by, — a0 a.s., v=1,- M ,l,g=1,2 m+1. (7)

i

Let A, denote the smallest eigenvalue of V7 and A, be the smallest eigenvalue of V3, then by condition Al and

A4, according to the argument of Stone'*! and using (7) , there is a positive constant A, satisfying —A, > A,, a.
g gu g P 0 ymng n 0

]
5. ,-;"AZ >\, a.s.. Hence

NZA =02 ll*+ 122
=X' V72X, +A(T,) 'V, 2A(T,)

< max || X, | /(nhy) + (m+1)M, /(ndy)  a.s.. (8)
By condition A2,we have
lm;l)(lRl-l=1m.ax|g(Ti) —A(T,) apl <CM . (9)

So (6) follows from (8), (9) and condition A5 and that M, ~n"®*V Set
r.(6) = YE(R +e-LM?Z' 8- R +e).
=1
By condition A3, (3) and (6) for @ satisfying || 6 || =1 and n sufficiently large,we have
[2
20

n

> A0 (R - LM,Z'0)*(1 +0(1)) ~ f(O)R}(1 +0(1))]

i=1

0

r,(6) (R~ LM, 220 + ) de =2 (R, +)fe)de]

—(R;-LM,\22' )

n

Z [f(O)LnZMn(Z’liol + Z'2i02)2/2 - 4f(0)Ri21

i=1

\%

= 0)L2M (1 + 222'”0[ «7',0,)72 —4f(0)n1r2jaxR?.
i=1 isn

here limo(1) =0 uniformly in §( loll=1).

n—o

Observe that 2 z 7.0, - Z'50, =20V Z X.Z',,0, and
= 2l
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;XHZIL’OZ
z XiZl2i02 =
i=1

ZIXikZ’zlez

Using A4, it follows that E( z X,Z',0,) = 0and that
E( ZXZ,ZlaZ ZEXzE(Z,ZLHZ =0y “92”2 Tjs J. = 1,29"'»k'

Hence ZXiZ,2i02 = 0,(1) . Again by A4, we have V:/n — EXX' a.s. , hence V;' =0P(n“l/2) =0,(1).
=

Therefore
20\ V'Y X208, = 0,(1) . (10)
i=1
uniformly in 8( ||@]<1). Thus by (6) and the above
r,(6) =f0)L:M,(1 +0,(1))/2. (11)
Set

G.(6) = 2 (IR, +e, -LM7?Z' 0| -I R, +¢,1) - ZEe(I R +e, —LM”?Z'0! -1 R, +e1).
i=1 i=1

It is easy to prove that M H z sgn(e, = 0,(1) , by (6) and Lemma 1,we deduce that
i=1

L>u! ”seulgll G,(8)1 =0,(1). (12)
From the definition of I",(8) and G,(8), combining (11) and (12), we have
LM ”ierhlil( 2 (R, +e, -LM"?Z' 0| -| R, +¢,1))
=L7°M' ”iarlllglrn(o) - LM ”s;J’EJ G,(6) 1= f0)(1 +0,(1))/2.
So
P{L’M mf (2(! R +e, -LM”?Z'01 -I R +e,1)) >0} —1

loll=1
From the convexity of the absolute-valued function | - |, we obtain

P{L’M;' uiﬂ‘il( SUR +e-LM?Z'01 -1 R +e1)) >0 — 1.
6 i=1
Hence
P inf | R. +e. —Z" 0l -l R +el >0 1.
%uan]arimw(;( T ' crel)) -

Therefore
Pial< LM7? — 1.

n

Proof of Theorem 1 Letn = Y sgn(e;)Z,/(2f(0)) , by (4) in Chen™ 2£(0)n —,N(0,1,). By

i=1

(4) we need only to show that 2(0)8, —,N(0,1,) , so it suffices to prove that for any 8 >0,P{ |8, -l <&}
— 1. So by (5), we need to show that

Pl I inflpaz | R, +e =20, - Z',6,1 > 2 | R +e,~Z'\m~2%8,11 -1
61-n1Po i1 i=1

Using the convexity of the absolute — valued function | -

, we need only to prove that

P (ZIRJre—Zlﬂ1 Z'0,1 - | R, +e, - Z'\m-2'58,1) >0} —1

Hel n||- : i=1

— 4 —
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By Lemma 2 and definition of 7, it follows that 16, = OP(M;/Z) , Il = 0,(1), so it suffices to show that for
any L>0,L" >0

n

P(f inf (z | R, +e -2",6, -Z',6,| -

l161-nll=8. ll6; leIMy? 1
2 I R, +e¢, ‘Z'lﬂl —Z,2i€2 Iy >0fn Hl’]”gy}) — L
izl

Set

n

G.(6,.,6,) = z (IR +e~26,-Z26,|-I R +e -2"06,1).

=1

Then we need only to prove that

P(L inf  (6,(8,,6) - G,(1,6,)) >0l N {pl< L)) — 1. (13)
No;-7 8.l 6, LMY

Set

T’n(al,@z) = ZEe(I Rio+e ~2'6,-2'0,| -I R +e,-2'6,1),
i=1

Sn<61,02) = Cn(ngez) "T’n(enez) + zsgn(e.-)z'lﬁl-
i=1
Then

n

En(onez) = Tn(al’OZ) - ngn(ei)z’liel +§n(01v02)-

i1
Observe that

n

Tn(elvoz) = 2 [f(O)(Z'“-HI)Z -2/(0)Z",6,R; +2/(0)Z' 6, * 2’6, +Tni<61702)]

i=1

= f(0) g, |} - 2£(0) ZZ’[i()lRi +2£(0) ZZ’“()I - 7,8, + Zﬂw.,ez),
here

7(6,,6,) =2 (R, +% = Z',6, = 2,0, (f(x) - f(0) )dx

(Ri-Z'6,-Z'262)
0
-2 (R +x = Z'40,) (f(x) = f(0))dx.
~(Ri~Z36)

Similar to the proof of (10), it follows that

21(0) ;Z’liolRi = 2f(0)6",V, ;XLR, = 0,(n"?) - OP((nlfgngf)m) =0,(1) (14)
and that

2(0) 3218y« 228 = 2(0)0'\V, T X L0, = 0,(n™%) - O,(M?) = 0,(1)  (15)
uniformly in 6, satisfying ||6, ||<L and 8, satisfying ||6, [|<ILM.?, where L =L" +8. By A6,A5 ,(8) and (9)
and the fact that M, ~n""®*" | we obtain

n

S 1 7.(6,,0,) | < max(I R+ Z'.0,1+1 Z,6,1)% (| R+ 26,1 +1 Z',6,1)*
i=1

=1 Isi<a

< CI’M, max(| R, 1 +1 Z',.6, 1 +1 Z',6,1) = 0,(1)

I<isn
uniformly in 6, (|§, <L) and 6,( 116, <LM.?). Hence
I,(6,,6,) =£(0)[g,[* +o,(1). (16)
Thus
G.(8,,6,) =f(0) |6, IF -2/(0)n'6, +3,(6,,8,) +0,(1), (17)
uniformly in @, ( H01 |<L) and 0, ( “02 I $LM,1,/2). Using the fact that 29’6, = H"r]H2 + ||6?I I* - Hn -8, I* and
that ||91 —7]” =8, we have
— 5 —
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G.(6,,6,) =f(0)8 - f(0) [nlP +5,(6,,6,) +0,(1). (18)
By (17)
G.(n,6,) =~f(0)|IglF +S,(n,6,) +0,(1), (19)
it follows from (18) and (19) that

G,(0,,8,) =£(0)8 +GC.(n,08,) -2 | S,(6,,8,) 1 +0,(1).

_sup
Il L, |l 6, lis LM}

By A5, using the method similar to the method of Lemma 1 and noting that p > 3/2, it can be shown that

su 1 5,(6,,8,) | =o0,(1). Hence
||911Kl,“£”gmyz 1502 )

P(| inf (6,(6,,8,) -G,(1,8,)) >0} N {|ylsL'}) -1

16,7 Ii=5. |l 6; lIs LMY

According to (13) ,theorem 1 follows.

n

v _ 1 v _ 1wy .
Proof of Theorem2 LetX = —3 X, X, = :;xlj,, =1, -,k , then

=
Y= (X, -X)'By +&(T,) +X'By +e;.
Set X,, =X, -X, g,(t) =g,(t,X) =g(t) +X'B,, then X, satisfies A4 and A5 and g, (¢,X) satisfies A2 and
Y, = X'.5 +g1(Tia/_Y) te;. (20)
The proof of theorem 2 is similar to the proof of theorem 1, in fact if (10), (14) and (15) hold, then theorem

1 holds for model (20). So we only show that (10), (14) and (15) hold. Since £( ZXm)Z’ZiHZ) =0, and
=

n

S Y E(X, -X) (X, -X)E(Z',8, - Z',6,)
=1

i=1

E( 2 Xngzlziez)z
i=1

E-jsz(Zlh'gz)z - (Eﬁ/n) Z ZE(Z,ZL‘HZ *Z'y0,)
i=1 i=l 1=1

<2|g,|Po; <20, j =1,k

Therefore ZX,"Z’Z,OQ = 0,(1). By A4’ we have V! =0P(n‘l/2) =o0,(1). Therefore 29, V;' EXM»Z’M}2 =
i=1 i=1

0,(1) uniformly in 6( lol<1). Thus (10) follows. Similar to the proof of (10), we can prove (14) and
(15). So theorem 2 follows.
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