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Abstract ; This paper deals with the quenching problem for degenerate semilinear parabolic equations with time delay.
By using regularization method and upper and lower solutions’technique,, we obtain the existence of a unique classical so-
lution to the above problem and prove that there exists a critical length a* such that the solution u of the above problem
exists globally for @ <a* and quenches in finite time for a >a* . Furthermore, we also get a simple estimate on the criti-
cal length a ™.
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0 Introduction

Quenching phenomena play important roles in both steady and unsteady combustion processes. They are also
important to the theory of ecology and related environmental research(see [1,2] and references therein). Since
the appearance of the work [3] by karawada concerning a one-dimensional heat equation with the singular reac-
tion function f(1) = (1 —u) ', quenching problem has attracted considerable attention, and extensions to vari-
ous types of parabolic initial boundary value problems have been investigated by many mathematicians (e. g. ,
[4—7]). Recently, papers [2] and [8] studied quenching for degenerate problem, and papers [1] and [9]
studied quenching for uniformly parabolic equations with time delay. In this paper, we would generalize the re-
sults of [8] and [9] to degenerate parabolic equation with time delay case. Our aim in this paper is to provide

sufficient conditions for the global existence and quenching in finite time of solutions to the degenerate semilinear

Received date; 2005-05-11.
Foundation item: Supported Partially by the Research Program of the Natural Science of the Universities in Jiangsu Province(05KJB110144).
Biography: Chen Youpeng, born in 1966, doctor, associate professor, majored in nonlinear partial differential equations.

E-mail: youpenge@ yahoo. com. cn



R TR A4 (A RBLERR) 55 29 A5 1 (2006 4 )

parabolic equations with time delay. The problem under consideration is given by
wu, —u, =flu(x,t-7)), (x,t)e(0,a)x(0,T),
u(0,t) =0, u(a,t) =0, te(0,7),
u(x,t) =n(x,t), (x,t) €(0,a) x[ -7,0],

where g0 and 0 < T< o0 are real constants, 7 and a are positive constants representing the time delay and the

()

length of the interval (0,a), respectively. We assume the singular reaction function f(u) and the initial fune-
tion 7(x,t) satisfy the following conditions:

(H,) fe C[0,d), f(0) >0, £(0) >0, f'(s) =0 fors € [0,d), lim f(s) =2, [ §f(5)ds =M <o and

d/ /M <%/ Vf(0), where d >0 is a constant.

(H,) n(x,t) eC*([0,a] x[ -7,0]), n(x,t) =0 for (x,¢) €[0,a] x[ -7,0], (0,2) =n(a,t) =
0forte[ -7,0], 1.(0,z) and 7, (a,t) exist for te [ —=7,0], uy(x) =5(x,0) e C***(0,a), where a €
(0,1) is a constant.

For example , we can easily verify that f(s) = (d -s) #(d=1,0<B<1) and n(x,t) =0 satisfy the above
conditions.

As in the case without time delay, the quenching problem of Eq. (1) is closely related to the existence and
nonexistence of positive solutions of the steady state problem

-U'=fA(U),xe(0,a), U(O) =U(a) =0, (2)

where U" =d’U/dx*. Tt is well known that under Hypothesis ( H,) there exists a constant a* >0 such that (2)

has a positive maximal solution U, (x) and a positive minimal solution U, (x) satisfying 0 < U,(x) <U,(x) for x

e€[0,a] if a <a” and it has no positive solution if a* is finite and @ >a” (see [1,6]). It has been shown in
[6] that

a” =sup{a >0, a positive solution to (2) exists} (3)

and a” is well defined. We say that the solution u(x,¢) of Eq. (1) quenches if there exists a finite T, >0 such

that
lim sup max u(x,t-7) =d. (4)

Let us state our main results.

Theorem 1.1 Let (H,) and (H,) hold, and let a <a™ , where a” is given by (3). Then

(i) a unique global solution u(x,t) to problem (1) exists and satisfies the relation 0<u(x,t) <U,(x) in
(0,0) x(0,0) if0<n(x,t) <U, (x).

(ii) the solution u(x,t) of problem (1) converges to U, (x) as t—» f 0<sn(x,t) <U (x).

Theorem 1.2 Let (H,) and (H,) hold, and let @ >a ™. Then for any n(x,t) =0, the corresponding so-
lution u(x,t) of problem (1) quenches in finite time.

This paper is organized as follows. In section 2, the local existence of the classical solution of (1) is estab-
lished. Sufficient conditions such that (1) has a global solution or its solution quenches in finite time are given

in section 3.

1 Local Existence

To get the existence of the classical solution of problem (1), we need the following comparison principle.
Lemma2.1 LetweC”' ((0,a) x(0,T))NC([0,a] x[ —7,T)) satisfy the relation
2w, ~w,=zc(x,)w(x,t-7), (x,t)e(0,a)x(0,T),
w(0,t) =0, w(a,t) =0, te(0,7),
w(x,t) =0, (x,t) €(0,a) x[ -7,0],
ifceC([0,a] x[0,T)) and ¢(x,¢) =0 in (0,a) x(0,T). Then w(x,t) =0 on [0,a] x[0,T).
Proof We first consider (5) in D, =(0,a) x (0,7]. By (5), we have
8 —

(5)
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2w, —w, 20, (x,t) eD,,
w(0,t) =0, w(a,t) =0, te(0,r], (6)
w(x,0) =0, xe (0,a).

It follows from Lemma 1 of [ 10] that w(x,¢) =0 on D,.
We next consider (5) in the domain D, = (0,a) x (7,27]. By the conclusion for w(x,t) on D,,
w(x,t —7) =0 in D,. Then again by (2.1), we get

xqw,—wnBO, (x9t)€D2’
w(0,t) =0, w(a,t)=0, te(7,27],
w(x,7) =0, xe(0,a).

And therefore Lemma 1 of [10] implies that w(x,t) =0 on D,. A continuation of the above argument leads to
w(x,t) =0 on [0,a] x[0,T).

From Lemma 2.1 and the strong maximum principle in [7, chapter 2], we can easily obtain the following
uniqueness and positivity results.

Lemma 2.2 Let (H,) and (H,) hold, then (1) has at most one solution u:u >0 in (0,a) x (0,7T).

By (H,) and (H,), we know that & =0 is a lower solution of (1). In the following Lemma, we prove that
(1) has an upper solution h(x,t) =0 on [0,a] X[ - 7,¢]. :

Lemma 2.3 Let (H,) and (H,) hold, then there exist positive constants t, <min(7,T) and d  (0,d)
such that (1) has an upper solution h e C*([0,a] x[ =7,2,]) NC*'((0,a) x (0,t,]), he (0, d] and h
depends on f,a,q and 7.

Proof The proof of this lemma is similar to that of Lemma 2 in [6] and that of Lemma 2.1 in [11], and
therefore is omitted here.

Now, we consider the following regular parabolic problem

2u, —u,, =flu(x,t-7)), (%,t) e (g,a) x(0,T),
u,(e,t) =u,(a,t) =0, te(0,T), (7)
u,(x,t) =n(x,t), (x,t) e(e,a) x[ -7,0],
where £ € (0,a) and (x,t):[£,a] x[ —=7,0] >R is simply the truncation of the initial data in (1). Obvi-
ously, z=h(x,t) and & =0 are a couple of ordered upper and lower solutions of (7) in (&,a) x (0,4,]. Even
though the compatibility condition does not hold, it is well known that (7) with 7 =0 has a C*' solution( see [ 12
~147). Then by the same method of the proof of Theorem 2.8.1 of [ 1], we can prove that (7) has a C*' so-
lution u,.
In the same way as that of Lemma 2.1, we can prove
Lemma 2.4 LetweC*' ((g,a) x(0,T))NC([&,a] x[ —7,T)) satisfy the relation
x'w, —w, =c(x,t)w(x,t-1), (x,t)e(e,a)x(0,T),
w(e,t) =0, w(a,t) =0, te(0,7),
w(x,t) =0, (x,t) e (g,a) x[ -7,0],
ifceC([e,a] x[0,T)) and ¢(x,t) =0 in (g,a) x(0,T), then w(x,t) =0 on [£,a] x[0,T).

By using Lemma 2.2.1 in [1] and Lemma 2.4, we can easily get the following monotone result.

(8)

Lemma 2.5 Let0<g, <&, <a and suppose that u, and u,, are solutions of (2.3) in (0,¢,], then
u, (x,t) >u,(x,t) in (&,a) x(0,t].
We set

limu,(x,t), (%,t) e(0,a] x[0,5],

u(x,t) = o0 9
() { 0, x=0,te[0,t,]. )

Then by standard arguments as those of Theorems 2.3 and 2.5 of [12], we obtain
Theorem 2.6 Let (H,) and (H,) hold, then (1) admits a unique positive classical solution u(x,t) in

— 9 —



R R 2R R RBE AR %529 B4 1 (2006 4F)

(0,a) x(0,t,]. Let T be the supremum over ¢, for which there is a unique positive classical solution u(x,t) to
problem (1) in (0,a) x (0, t,], then problem (1) exists a unique positive classical solution u(%,¢) in (0,a)

x (0, T). Moreover, if T < « then limS}lp rrfgx]u(x,t—T) =d.

2 Global Existence and Quenching in Finite Time

To prove the main theorems, we need some lemmas.

Lemma3.1 Let (H,) and (H,) hold, and let u(x,¢) and u(x,t) be the positive solutions of (1) corre-
sponding to n(x,t) =0 and n(x,t) =0, respectively. Let also v(x,t) be the solution of (1) with 7 =0 and
with the initial function »(x,0) =v,(x) =0. Assume that n(x,t) <v,(x) on [0,a] x[ —7,0] and that v,(x)
is a lower solution of (2), then

' u(x,t) <u(x,t) <v(x,t) on [0,a] x[0,T). (10)

Proof We first show the relation v(x,t) =u(x,t). Let w(x,t) =v(x,t) —u(x,t), then

w, ~w,, =f(v(x,0)) -flu(x,t-7)), (x,t) €(0,a)x(0,T),
w(0,t) =w(a,t) =0, te(0,7),
w(x,t) =v,(x) —n(=x,t) =0, (x,t) e (0,a) x[ -7,0].

Since v,(x) is a lower solution of (2), similar to the proof of Lemma 5.4.1 in [1], we can prove that v(x,t)

(11)

is nondecreasing in ¢. By considering v(x,t) =v,(x) for (x,t) € (0,a) x[ -7,0] and using the condition
f>0in (H,), we have f(v(x,t))=f(v(x,t-7)) in (0,a) x(0,7T). This and (11) lead to
w, —w =f (Ew(x,t—-7), (x,t) e(0,a) x(0,7),
w(0,t) =w(a,t) =0, te(0,7),
w(x,t) =0, (x,t) e(0,a) x -7,0].
Since £ (¢) >0, Lemma 2. 1 implies that w(x,t) =0 on [0,a] x[0,7T), that is, v(x,t) =u(x,t) on [0,a]
x[0,T). The proof for u(x,t) =u(x,t) on [0,a] x[0,T) is similar.

Lemma 3.2 Let (H,) hold, and let u(x,t) be the positive solution of (1) corresponding to (x,t) =0,
(%,t) €[0,a] x[ =7,0], then u,(x,t) >0 in (0,a) x(0,T).

Proof The proof is similar to that of Lemma 2.8 in [10], and hence we omit it here.

Proof of Theorem 1 (i) We take u(x,t) =U,(x) and a(x,t) =0 as a pair of upper and lower solutions
of (1) when 7(x,t) <U,(x), then Theorem 2.6 implies that (1) admits a unique global solution u(x,z) and
it satisfies the relation 0<u(x,t) <U,(x) in (0,a) x (0,% ).

(ii) We take u(x,t) =U,(x) and 2(x,t) =0 as a pair of upper and lower solutions of (1) when n(x,z)
<U,(x), then Theorem 2.6 implies that a unique global solution u(x,) to (1) exists and satisfies the relation
u(x,t) <U/(x) in (0,a) x (0, ). Let u(x,) be the solution of (1) corresponding to n(x,t) =0, then by
Lemma 3.1, we have

u(x,t) <u(x,t) <U/(x) in (0,a) x (0, ). (12)
From Lemma 3.2, we have u,(x,¢) >0 in (0,a) x (0, ). And then we can show in the same way as that of
Theorem 3.1 of [8] that u(x,t) converges to U {x) as t~—o . Therefore it follows from the relation (12) that
ll_ig}u(x,t) =U,(x).

Lemma 3.3 Let (H,) hold, then the positive constant a” given by (3) is well defined and a* <

7/ /f(0).
Proof It follows from [ 6] that a” is well defined, therefore we only need to prove that a* <u/ /f (0).
Let A, =A,(a) and ¢, =¢,(x) be the smallest eigenvalue and the corresponding eigenfunction of the following

eigenvalue problem

&"(x) +Ad(x) =0, 0<x <a, $(0) =d(a) =0. (13)
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2 .
It is well known that A, =A,(a) =(%) and ¢, =¢,(x) =sin %x, and it is obvious that A, = A, (@) —0 as

a—» and ¢,(x) >0 in (0,a). Hence A, =A,(a) <f(0) for all @ >n//f(0). Assume that (2) has a
positive solution U, for some a >w/ /' (0) , then multiplication of Equation (2) by ¢, (x) and integration over
(0,a) yield

- [ @8 (= [ JUx)) 9 (x)d
Upon integration by parts and application of the equation (13), we obtain
@) [ U@ (0)dx = [ U306, (x)d (14)
By the mean value theorem and ( H, ), we have

AU) =f0) +f(EU, >f(0)U,.

Hence we have
[ AU G dx = £10) [ U (), (x)dx.

It follows from the above inequality and (14) that A, (a) =f'(0), that is, a<w/ /f (0) , which contradicts

our assumption. Hence (2) has no positive solution when a > w/./f(0), and this shows that a™ <
w/ J/f(0).
By using the comparison principle Lemma 2. 1 and the strong maximum principle in [ 13, Chapter 2], we
can easily obtain the following monotonicity respect to a.
Lemma 3.4 Let (H,) hold and denote by u(x,t;a) the positive solution of (1) in (0,a) x (0,T) cor-
responding to n(x,t) =0, thén\for any positive constant a,
uletiota) >(n6a), o (0,0) (0,T). (15)
u(x,t;a+a) >u,(x,t;a),
Lemma 3.5 1Let (H,) and (H,) hold, and let a >a”, then for any 5(x,¢) =0 there exists a positive
constant T, <o such that (1) admits a unique positive solution u(x,t) on [0,a] x[0,T,) and

lim supmaxu(x,t—‘r):d. (16)

O<x<a

Proof By Lemma 3.1, u(x,t) =u(x,t) on [0,a] x[0,T,), where u(x,t) is the solution of (1) cor-
responding to (x,t) =0. It suffices to show that u(x,t) satisfies (16). Since u(x,¢) is monotone nondecreas-
ing in t, it either satisfies (16) or converges to a positive solution of (2). And the latter is impossible for (2)
has no positive solution when a >a”. Hence (16) holds.

Lemma 3.6 Let (H,) hold, and let u(x,t) be the positive solution of (1) corresponding to n(x,t) =0,
then the set of quenching points of u(x,t) lies in [8,,a -8, ], where §, =d’/(2Ma).

Proof Similarly as the argument of Theorem 4.1 in [15], by using the property u, >0 in (0,a) x
(0,T,), we can also show the conclusion of this lemma. Hence we omit the proof.

Proof of Theorem 2 In view of Lemma 3.1, it suffices to show that the solution u(x,7;a) quenches at

finite time T,. By Lemma 3.5, there exists T, <o such that lir;] max, u(x,t —7;a) =d. Now if T, < , then
t—Txel|0,e] —

the theorem is proved. Assume by contradiction that T, = o , then for arbitrary £ >0 sufficiently small, there ex-
istx, =x,(£) €(0,a) and t, =¢,( &) > sufficiently large such that u(x,,t, —-7;a) :ngg?i] u(x,t, —730) =
d - . For any given positive constant «, we will prove that T, , < ®. Assume by contradiction that T,, = .
We define

B=B(&) =inflxe (x,,a+a)lu(x,t, -T;0a+a) =d -} -x,.
It follows from Lemma 3.4 that u(x,,t, —7;a +a) >u(x,,t, -73a) =d - &, then B=B(¢) >0. We can fur-
ther deduce that B( &) =8, >0, where B, is a positive constant independent of £. In fact, without loss of gener-

ality, we can assume that the quenching point of u(x,z;a) is unique. By Lemma 3.6, we have
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l‘i)rglx,(e) =x,, lim )g(x,t—T;a) =d, x,e[6,,a-6,1C(0,a).

(x,t) (29, ®

Then % = infd %,(e) € (0,a). Similarly, x,(g) +8(&) € (0,a +a) and

0<e<?

lim (x, (&) +B(e)) =1y, ( lim )E(x,t—fr;a +a) =d, x',e(0,a+a).
e—0+

x,0)—(x'g,®

Then x <x = supd(xl(e) +B(e)) e (0, a+a). By Lemma 3.4, we get

o<t
u(x,t-150 +a) >u,(x,t -71;a).
Then
u(x,t, -mia+a) —u(x,t, —7;a) >u(x,t, 150 +a) —ul(x,ty -75a0) 26, >0, xe[x, 2],
where t, & (7,t,(£)) and 8, are positive constants independent of &. Therefore there exists £ € (x,,x, + )
such that
8, <u(x, bt —Tia+a) —u(x,b —73a) =u(x, 5, ~7;a +a) —u(x, +B;5t, ~7;a +a)
= -u, (&8 T30 +a)B.

From the proof of Lemma 3.6, we know that

fg*“g:(x,z;a+a)dx$2M(a +a), tel0,T,,.).
And from Theorem 2.6, we have v, (x,t;a +a) eC"((0,a+a) x(0,T,,,)). Hence

u (x,t;a+a) eC([z, ] x[t,-7,T,.,)).

It follows from ¢ e (%, ,x, +B) C[ %, x] that there exists a constant K independent of £ such that lu, (&,t, —7;

é
a+a)l <K, henceB>?2 =, >0.

By condition limf(u) = in (H,), we can choose & >0 sufficiently small and ¢, =¢, (&) sufficiently large

u—d -

such that
f(v)?(xl*)qx—‘:—+1)‘6—f forve|d-2e,d), (17)
where x," e [x, ] equals to x, + A for ¢ >0 and x, for ¢ <0 with x, =x, (&) being a point at which u(x,t, - 7;
a) attains its global maximum d — & and A =min{«,B8} with
B=B(e) =inf{xe (x,,a +a)lu(x,t, ~T;a+a) =d —¢| —x, >f,.
Let Q= (x,,x, +A) x(¢,,t, +7], and consider (1) in domain Q, where the boundary and initial condi-
tions are replaced by .
u(x,,t) =d -, u(x, +A,t) =d-¢, te (4,1, +7],
u(x,t) =d-¢e, (x,t) e (2,2, +1) x[t;, —-7,¢,]. (18)
By the definition of A and Lemma 3.4, we know that u(x,t) =u(x,t;a +a) satisfies the differential equation
(1) and
u(x,,t) =u(x, t;a+a) >ulx, b, —r;a+a) =d-¢, te (1,1, +7],
u(a, +A,t) =u(x, +A,t5a+a) >ulx, +A,t —m5a+a) =d-¢g, te(t,t, +7],
u(x,t) =u(x,t;a+a)=d-¢, (x,t) e (x5, +A) x[1, —7,1,].
Therefore u(x,t) is an upper solution of (1) and (18). We next construct a lower solution of (1) and (18) in

the form

u(x,t) =d -2 +8(x -2, ) (2, +A —x) (t+7-1,), (19)
where 8 = % Indeed, it is easy to verify that u(x,t) satisfies the relation
T

u(x,,t) =d-2e<d-g, u(x, +A,t) =d-2e<d-¢g, te(t, t, +7],
u(x,t) =d -2 +6(x—x,)(x, +A —x)(t+7-1¢,)

2

sd—2e+%x%x'z—=d—e, (5.8) € (2,05, +A) X[, =742, ]
T
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Moreover, a simple computation shows that

*\9q
2’0, —u, =x'6(x —x,) (%, +A —x) +256(¢ +T—tl)$M+1/\6—zg, (x,t) €Q.
T
Since u(x,t —7) =d —2¢ for all (x,t) e Q, condition (17) ensures that
(xlt)qg 16¢
T

o
x'u, -u, <

+~)7<f(11(x,t-7)), (%,t) €Q.

This shows that u(x,¢) is a lower solution. It follows from the properties of upper and lower solutions that the
function w(x,t) =u(x,t) —u(x,t) satisfies the equalities (5) with c(x,t) =f'(¢) >0 and (0,a) x (0,T) re-
placed by Q. Then Lemma 2. 1 implies u(x,t) =u(#x,t) in Q, in particular,

u(x, +%,zl +2r-1ia+a) =ulx, +—’\2—, L +T)

2

. A A
=u(x, + 5k +7)=d -2 +6(t, +1 +7—LI)Z=d.
This shows that u(x,t;a + @) must quench in finite time T,,, < o, for the arbitrariness of & >0 and a > a”.

Therefore T, = + o is impossible and T, must be finite, and this completes our proof.
From Lemma 3.6 and Theorem 2, we know that if a >a* then a -28,=0, i.e. , a —d’/(Ma) =0, a=d/ VM,

hence a* =d//M. Combining this with Lemma 3.3, we obtain a simple estimate of the critical length a”* ;
d T

.
——<a's—2—

M)
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