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Mountain Pass Lemma Without the P S Condition
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Abstract: In this paper, the well-known Mountain Pass Lemma is considered without the Palais — Smale (P.S. ) Con-
dition. It is obtained that the existence of asymptotical-critical points of a functional which does not satify the P. S. con-
dition. The main result generalizes the classical Mountain Pass Lemma. This paper also provides a new proof method for
classical Mountain Pass Lemma under weaker conditions.
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0 Introduction

Minimax theorem is one of basic theorems in critical point theory. In 1973, Ambrosetti and Rabinowitz pro-
posed the well-known Mountain Pass Lemma[ 1], which was stated as follows:
Theorem A Let £ be a real Banach space. Assume that fe C1[ E, R] satisfies the Palais-Smale (P. S.
in short) condition, {2 is an open neighborhood of x,, %,, %, € E, x, ¢ {2,
max {f(%), f(x) ] < inff(x). (1)
Set ¢ = inf max]f(h(t) ), where @ = {hlh.[0,1]—E is continuous and A(0) =x,, h(1) =x,|. Then ¢ must

hedte(0,]
be a critical value of f, i.e. , there exists x* € E such that f/(x”") =@ and f(x" ) = c.

Mountain Pass Lemma was extensively used in many disciplines of pure and applied mathematics including
ordinary and partial differential equations, mathematical physics, geometrical analysis, etc. [2][3]. Here, we
state the P. S. condition as follows:

Definition 1{4] Let E be a real Banach space, fe C'[ E, R]. The functional f is called satisfying the
P. S. condition if any sequence {x,} CE with

f(x,) being bounded and f' (x,)—6
contains a convergent subsequence.

In 1987, Qi Guijie[ 5] obtained the existence of a critical point with the weaker condition
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max f(x,) , f(x,) | < inff(x) (2)
instead of (1) without any additional condition.

The P.S. condition is very important in the variational methods. We know that the P. S. condition make an
important rule in establishing Deformation Lemma. But for some functional, it is very difficult to verify the com-
pact condtion, so it is significant to study the problem of the existance of critical point without the P.S. condi-
tion. In this paper, we study Mountain Pass Lemma and get a new result of determining the asymptotical critical

points.

1 Main Result

In order to state the main result of this paper, we first introduce the following basic lemma:

Lemma 1{6, Lemma 2.3] Let X be a Banach space. Assume ¢ e C'(X, R), SCX, ceR, £,6> 0
such that

' (u) || =86/8, Yueep '([c-2e,c+2e]) NSy
where S,; = {ue XIdist(u,S) <28]. Then there exists e C([0,1] xX, X) such that

(i) p(t,u) =u, Yuge '[c -2¢, c+2&] NS, 0rt =0;

(i) p(1, " NS) Ce"™";

(i) (n( -, u)) is nonincreasing, YueX.

Now we give the main result of this paper.

Theorem 1 Let X be a Banach space. Assume ¢ € C'(X, R) and £ is an open neighborhood of 8, e ¢
£. Set

o =maxie(0), e(e)f, ¢ = info(x), c=inf  max o(y(1)),
where I' = {yly:[0,1]—E is continuous and y(0) =6, y(1) =e}.

If ¢,=c,, then for every & > O there exists x € X such that

(a) ¢ - 2e<¢p(x) <c+2e;

(b) @'(x) | <2e.

Proof From the assumptions, we have ¢, <c,<c. If ¢y < c, then ¢,(<c¢;) < c. Thus in this case, the
theorem is proved by Theorem A. So it is only needed to prove the theorem in the case of ¢, = ¢. In the follow-
ing, we use a proof by contradiction. Assume there exists £, > 0 such that

o' (x) || =2¢,,Vxep ' ([c-2&,c+26,]).
Set S = X. Then the assumption of Lemma 1 is satisfied. So there exists e C([0,1] xX, X) such that

(i) p(t,u) = u, Vago '([c-2e,,c+2¢,]) ort=0;

(i) n(1,9") Co™™ "5

(iii) @(n( ¢ ,)) is nonincreasing, YueX.

From the proof of Lemma 1, ¢ (t,u) is the unique solution of
{%UUM)=ﬂUUMﬂ,

ag(0,u) = u
for every ue X and n(t,u) =o0(2¢&, t,u), where
flu) = {“ﬁ(u) lg(u) | “g(u), wued,
g, ue X\A,
A=¢ ' ([c-26,c+26]1),B=¢"([c-e,c+e]),
B dist(u,X\4)
V() = §at(u, X\) + dist(a,X\B) "
g is a pseudogradient vector field of ¢’. Since ¢ = in£ n[lgui](p('y(t) ), there exists y, e I" such that

ye t s

&
Jmax p(y(1)) <e+ o
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Let B(t) =n(1,y,(t)), 0<t<1. Then B is continuous and
B(0) =n(1,0) =x,,8(1) =n(1,e) =x,.
We claim x, e 02, x, ¢ . Indeed, if x, ¢ £2, then from the continuity of 57:[0,1] x X-—>X,we can see that
there exists s, € [0,1] such that (s,,0) € a42. Thus
< ¢(n(s0,0)) < @(7(0,0)) = ¢(6) <¢; <S¢,
which means ¢(7(s,,0)) —ga(ﬁ) =c¢, =c. From the definition of B, we have 17(s0,0) € B. Tt is easy to see

d
12050 = (¢'(n(5,0) {n(.0)) = (¢'(n(5,0)) 28, 355 0(2015.0))

= (@' (n(s,0)) .26 /(0(26,5,0))) = (¢'(n(s,0)) .26/ f(n(s5,0)))
—281(0(1](8,0)),
thus

f;02£1¢(n(5,0)ds < o(5(0,0)) - o(n(sy,0)) =cy — ¢, = 0.

Since ¢ is locally Lipschitz continuous and O0<<¢/(u) <1, Yue X, we have y(n(s,0)) =0, VO<ss<s,,
which implies ¢(5(sy,8)) =0. But from the definition of  and 7(s,, ) € B, we have ¢ (n(s,,0)) #0,
which leads a contradiction. Similarly, we can prove x, ¢ £2.

Since y,(t) e ™™, 0<i<1 and n(1,9° ") Ce ™", it follows that

e(B(1)) = e(n(l,y,(2)) <c-g,0st<1
However, since x, e {2, x, ¢ {2 and B is a path connecting x, and x, , there exists £ € (0,1) such that 8(¢)
€ (2. Thus
c-g = go(,B(i)) = xi;%go(x) =¢ =c,
which is a contradition. Therefore Theorem 1 is proved.
Remark 1 Let S =442, then by Lemma 1 the result of Theorem 1 can be strengthened as: V& >0,6 >0,
Jx € X such that

(a) ¢ - 2e<<ep(x) <c+2¢;

(b) [ ¢'(x) || <8s/5;

(c¢) dist(x,002) <26.

From Theorem 1, it is easy to prove the following theorem .

Theorem 2  Assume that all the conditions of Theorem 1 are valid and ¢ satisfies the P. S. condition, then
c is a critical value of ¢ and

(1) K, - {6,e} #0;

(2) K,.NoN#P, whency = c, where K, = {ueXlp'(u) =0,¢(u) =c}.

Remark 2 Theorem 2 is just the main result of [3]. Acturally, Theorem 1 also provides a new proof

method for classical Mountain Pass Lemma.
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