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_ Abstract; Combined with the edge-connectivity, this paper investigates the relationship between the independence-
number and the upper-embeddability of a 3-edge-connected simple graph and obtains the following result: Let G be a 3-
edge-connected simple graph with a( G) <5 (where a(G) is the independence-number of ), then G is upper embed-
dable, and two minimal examples are given in the sense that there are 3-edge-connected graphs which are not upper em-
beddable.
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0 Introduction

Graphs considered here are all connected, undirected, finite and furthermore simple. Terminology and nota-
tion without explanation in this paper will generally conform to that in [1].

A surface, always denoted by S, will mean a compact, connected and orientable 2-manifold. Such a mani-
fold may be thought of a sphere with several handles. The number of handles on a surface S is called the genus
of the surface S and is denoted by g(S). By embedding a graph in a surface, we mean placing the vertices and
the edges of the graphs in the surface such that edges may meet only at mutually incident vertices. A 2-cell em-
bedding, or in other words, cellular embedding, of a graph G is one in which each of the components of the com-
plement of G in the surface is topologically homeomorphic to an open disk. The components of complement of G
are called faces or regions. Note that a disconnected graph does not admit a 2-cell embedding in any surface.

The genus, denoted by y(G) , of a connected graph G is defined as the minimum integer g(S) , where S is
a surface in which G has a 2-cell embedding. The maximum genus, denoted by y,,(G), of a connected graph G

is defined to be the maximum integer g(S) such that there exists a cellular embedding of G into the orientable
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surface of genus g(S). The definitions mentioned above are given with more topological rigor in the survey article
by S. Stahl [2].

Since any 2-cell embedding of a connected graph G must have at least one face, the Euler polyhedral equa-
tion implies an upper bound on the maximum genus y,( G) SL@J , where B(G) = E(G)| - 1V(G) | +1
is known as the Betti number (or cycle rank) of G (for any real number x, | x | denotes the maximum integer no
greater than x). A connected graph G is called upper embeddable if v, (G) = L@J It is easily known from

Euler’ s formula that a graph G is upper embeddable if and only if G has one or two face embedding on the orient-
able surface of the maximum genus according to S( G) is even or odd.

Since the introductory investigation of maximum genus by E. Nordhaus, B. Stewart and A. T. White [3],
the upper embeddability of graphs has been studied extensively. In particular, N. Xuong [ 4] has shown that a
graph G is upper embeddable if and only if there is a spanning tree T of G such that at most one of the connected
components of G/T consists of an odd number of edges. Moreover, Kundu [ 5] proved that every 4-edge-con-
nected graph contains two spanning trees. Combining these two results shows that every 4-edge-connected graph
is upper embeddable. Since 4-vertex-connectivity implies 4-edge-connectivity, it follows that every 4-vertex-con-
nected graph is also upper embeddable. However, there are examples of 3-edge-connected graphs that are not
upper embeddable [6].

1 Some Basic Lemmas

Let G be a graph and T be a spanning tree of G,£(G,T) denotes the number of the components of G/E(T)
with odd number of edges, we define £(G) = mrmf (G,T) to be the Betti deficiency of G, where the minimum is

taken over all the spanning trees of G. Note that £(G) =8(G) (mod2).

For the upper embeddability of graphs, in 1979 N. H. Xuong has given a sufficient and necessary condition
in [4,7].

Lemma A (Xuong) ;: Let G be a connected graph, then

(1) G is upper embeddable if and only if ¢(G) <1;

(2) yu(6) ELOZEEO)

From Lemma A above, the maximum genus of a graph G is mainly determined by the Betti deficiency ¢(G)
(since the Betti number 8( G) can be easily computed).

Again, for a graph G and ACE(G), denoted by ¢(G/A) the number of the components of G/A and by
b(G/A) the number of the components of G/A with odd Betti number, the following lemma was proved in 1981
by L. Nebesky [ 8].

Lemma B (Nebesky) : Let G be a connected graph, then

(1) G is upper embeddable if and only if ¢(G/A) +b(G/A) -=2<|A] for every ACE(G);

(2) £&(6) =AglEa:)é){c(G/A) +b(G/A) - 1Al -1}.

Let F\,F,,---,F,(1=2) be I distinct subgraphs of G, then denoted by E;(F,,--+,F,) the set of those ed-
ges of G whose two ends are, respectively, in a pair of subgraphs F; and F, for 1<i, j<! and i#j, and let
E(F,G) denote the edges one of whose end vertices are in V(F) and the others not in V{F). The following
lemma proved in [9] (or [10]) plays a fundamental role throughout this paper.

Lemma C (Huang) : Let G be a connected graph. If ¢(G) =2, namely G is not upper embeddable, then
there exists a subset ACE(G) such that the following properties hold ;

(i) ¢(G/A) =2 and B(F) =1 (mod2) for any component F of G/A;

(i) 3=2¢(G/A) - 1Al <4
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(iii) F is an induced subgraph of G for each connected component F of G/A;

(iv) 1EG(F, - F))|<2l-3 for any [=2 distinct components F,,--- F, of G/A,
especially, |E (F,,F,) <1 forl=2;

(v) €(G) =2¢(G/A) - 1Al -1.

In the above Lemma C, we notice the following facts:

Lemma D: Under the conditions and conclusions of Lemma C, we have

(1) For any component F of G/A, if G is k-edge-connected (k=1), then |E(F,G)|=k.

(2)1 Al = %z | E(F,G) | , where F is taken over all the connected components of G/A.
F

(3) If G is 3-edge-connected, then ¢(G/A) =4.

Proof According to Lemma C, we construct a graph G’ = G/(G/A) as follows. The vertices of G’ are the
components of G/A. For each edge in A joining a pair of components in G/A, we make an edge in G’ joining the
corresponding vertices. It is easy to see that G’ is connected because of the connectivity of G. From the definition
of G', we see that the degree of each vertex of G’, corresponding to a component F of G/A, equals |1E(F,G) 1,
so it follows that if G is k-edge-connected (k=1), then |E(F,G) | =k for any component F of G/A. Again, we

have that2 | Al =21 E(G") | = 2 de(x) = Y | E(F,G) 1.
P F
Furthermore , Lemma C show that A must be a set of edge-cut and [41=3 ( Otherwise, 4 cannot be a set of
edge-cut of a 3-edge-connected graph). If 141 =3, because a 3-edge-connected graph has at most 2 components
after removing any 3 edges, this implies that ¢( G/A) <2, which contradicts to the conclusion (i) of Lemma C.

Thus, [A] >3, we then get that | =¢(G/A) =4 by property (ii) of Lemma C.

2 The Main Results

The independence-number, denoted by a(G), of a graph G is the number of vertices in a maximum inde-
pendent set of G. Since the reason mentioned above, we consider here only such graphs with edge-connectivity =
3, we have the following theorem.

Theorem 1 Let G be a 3-edge-connected simple graph with a(G) <5 (where a(G) is the independence-
number of G) , then G is upper embeddable.

Proof By contradiction that assumes G is not upper embeddable, from Lemma C, there exists ACE(G)
such that all the components F, ,F, -+ F,(I=c(G/A)) of G/A satisty the properties (i)—(v) of Lemma C.
Because G is 3-edge-connected, |E(F,,G)1=3 for all i=1,2,---,l. Again from (3) of Lemma D, we know
that [ =c(G/A) =4. Now we shall handle two cases [ =4 and [=5.

Casel [=4.

Let F|,F,,F;,F, be the four components of G/A. Because G is 3-edge-connected, we get that |E(F,,F))
I =1 (i#%j; 1,)=1,2,3,4) by (iv) of Lemma C, thus |E,(F,,F,,F;,F,) | =6.

Again, by (i) of Lemma C, we then have that |E.(F,,F,,F;,F,)1<2x4-3=5.

This is a contradiction! '

Case2 [=5.

Now let x be the number of F, with |E(F,,G) | =3 for i =1,2,---,1, we then have that | A | =

!
D | E(F.,6) 1 B%[3x+4(l—x)] =2 -

B

x
>

l\)|»—'

From (ii) of Lemma C: 3<<2¢(G/A) — |Al, we have that 3<2] - (2] —%) , i.e. x=6. Without loss of

generality, let F| ,F, F, F, Fs F be the components with |E(F,,G)| =3 (1<i<6). By (i) of Lemma C:
B(F,) =1(mod 2) (1<i<6) and because G is simple, we get that |V(F;) |1 =3(1<i<6). Since |E(F;,G)
| =3, that there exist ¥, € V(F,) (1<i<6) such that x,,x,,%,,%,,%x; and x4 are not adjacent with each other,
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thus, we get that @( G) =6 which contradicts to the a( G) <5!

Thereby, we complete the proof the theorem.
Remark If G is a 3-edge-connected simple graph
with diameter three, by Claim 2 in [10], then for any
F(i=1,2,3,4,5,6). F,is a complete graph K,.
From the Case 2 of the proof, G must be the graphs G,
or G, shown in Fig. 1. Take A = {e,,e,,e;,¢,,e5,¢,
e;,eq,651 , it is easily known that ¢(G,/A) =b(G,/A)
=6 (i=1,2) and 1Al =9, we then get that
c(G,/A) +b(G/A) -2=6+6-2=10=9 = |A4I.
By the Lemma B, we know that neither G, nor G,
is not upper embeddable. Thus, two types of minimal
examples are given in the sense that there are 3-edge-
connected graphs which are not embeddable.
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Fig.1 Two 3-edge—connected graphs with @ (G)=6 whoOich

are not upper embeddable
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