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A V-cycle Multigrid Method
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Abstract : In this paper, a V-cycle multigrid method is presented for the Mortar-type rotated Q; nonconforming element.
The uniform convergence rate is proven, which is independent of mesh size and mesh level. Numerical experiments are
presented to confirm our theoretical results.
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0 Introduction

The mortar finite element method is a nonconforming domain decomposition technique tailored to handle
problems posed on domains that are partitioned into independently subdomains. The meshes on different subdo-
mains need not align across subdomains interfaces. Adequate weak continuity conditions replace the pointwise
continuity at the interfaces. This offers the advantages of freely choosing highly varying mesh sizes on different
subdomains and is very promising to approximate the problems with abruptly changing diffusion coefficients or lo-
cal anisotropy.

The rotated Q, element is an important nonconforming element. It was first proposed and analyzed in [ 1] for
numerically solving the Stokes problem. The rotated Q, element provides the simplest example of discretely diver-
gence-free nonconforming element on quadrilaterals. Due to its simplicity, the rotated Q, element is used to sim-

ulate the deformation of martensitic crystals with microstructure in [2]. Independently, it also was derived with-
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in the framework of mixed element method (see [3]). Recently, Chen and Xu proposed a mortar element ver-
sion for rotated Q, element in [4].

In this paper, we focus our attention on studying multigrid method for the mortar finite element method for
the rotated Q, element. Since the Mortar-type rotated (; element space can’t consist of any bilinear element
space, a special intergrid transfer operator is presented for the nonnested spaces. Based on this operator, we give
a V-cycle multigrid algorithm and prove that the V-cycle multigrid is uniform convergence, i. e., the conver-
gence rate is independent of mesh size and level. We use the rotated @, mortar element only on the last level L,
and use the conforming bilinear element spaces as the coarse-grid correction spaces on all coarse levels. It is
shown that this V-cycle multigrid requires only one smoothing step on all coarse levels [ < L, while on the last
level L a sufficiently large number of smoothing steps is needed.

The outline of this paper is organized as follows. In section 2, we introduce model problem, the rotated Q,
mortar element method, and some notations. In section 3, we construct an intergrid transfer operator and propose
our multigrid algorithm. In section 4, We give the proof of uniform convergence for the V-cycle multigrid. Nu-

merical experiments is presented in the last section.

1 Preliminaries

For simplicity, we consider the following model problem
-Au = f, in £2,
{u =0, on 3{2,
where Q2C R is a bounded rectangular domain, fe L’ ({2). There is no difficulty to extend the results in this pa-

(1.1)

per to more general second elliptic problems.
The variational form of (1.1) is to find u € H,' (£2) such that
a(u,v) = (f,v), Yo e H,' (), (1.2)
where the bilinear form

a(u,v) = LVu- Vodx, Yu,0o e H(Q).

From [5] we know for any fe L’ ((2), there is a solution of (1.1): ue H*(£2), such that
lull, < Clifly (1.3)

Divide {2 into geometrically conforming rectangular substructures, i.e. , = nglT)kwith 0, N L), being empty
set or a vertex or an edge for £#[. With each (), we associate a quasi-uniform triangulation .7} ({2,) made of ele-
ments that are rectangles whose edges are parallel to x-axis or y-axis. Denote the global mesh U, % (£2,) by 4.
The mesh parameter h, is the diameter of the largest element in 97 ({2,). Let I',, denote the open edge that is
common to (2, and {),. Denote by I" the set of all interfaces between the subdomains, i.e., I' = U a8, \oN.
Each edge inherits two triangulations made of segments that are edges of elements of the triangulations of {2, and
{), respectively. In this way each I, is provided with two independent and different one dimensional meshes,
which are denoted by 73 (I",) and 73 (Ty) respectively.

For each triangulation .7, (£2,) , the rotated Q, element space is defined by

X,(0) =lvel’ ()] v, =a2+a§x+ai~y+a2(x2—y2),a2E%,f vl,,ds =0,
sENan

VE e F(0Q,);for E, ,E, € 7(£,), if E, N 3E, = e, thenfvlaElds = fvlwzds}
with the so called broken norm and the broken seminorm

L L
Z{mllvllf,l(mz, Folmay = C Y Mollig)?

s (1 Ee ()

Next the global space X, ((2) is define as follow:
— 97— '

ol oy = (E
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Xh(-()) = kl;Ith(nk) »

with the following norm and seminorm

N L N N
Nolliw = (Y ol ) > Lol = (Y 1 olha)?
= =
Define one of the sides of I, as mortar denoted by v,,, and the other as nonmortar denoted by §,,,,. As-
sume that the mortar for y,,,) =8, = 'y is chosen by the condition h, <h,, i. e., the fine side is chosen as
mortar. Based on this assumption, the two elements of the slave triangulation .7;(6,,,( 5 ) that touch the ends of
8,1y are longer than the respective elements of the mortar triangulation Tt (Vi & ). Define an auxiliary test space
Mh’(am( 1) to be a subspace of the space L*(TI,,) such that its functions are piecewise constants on .72(8,”( n)-
The dimension of M*(8,,,,) is equal to the number of elements on the 8,,,. For each nonmortar §,,,, =I",,, we
define an L’-orthogonal projection Q,,: L*(I',) —M" (8, ) by
(Qnv,w) 2(n) (”’w)msm(z)) » Ywe Mhl(am(l) ). (1.4)
Now we define rotated (, mortar element space
Vi=lveX,(2)1 Qv = Qnvis Y80ty = Yy € rt,

where v, =vl and v, = vl The condition of the equality of the L*-orthogonal projection of traces onto the

Ym(k) Sm(py*

test space for each interface is called the mortar condition.
The rotated Q, mortar element approximation of problem (1.2) is: find u, € V,, such that
a,(uy,0,) = (o), Vo, e Vy, (1.5)

where

N
“h(uhs”}.) = zah,k(umvh), ah,k(uh9vh) = 2 fvuh * Vo,da.
k=1 EcTn)'E

Define operator A, : V,—V, as follows:
(Au,) = a,(u,v) YuveV,
then (1.5) can be represented as:
Ay, = fis (1.6)
where f, e V,, (f,,v) =(f,v),VveV,.

2 Multigrid Algorithm

In this section an effective V-cycle multigrid algorithm is presented for the mortar — type rotated Q, element.

Let 4] be the coarsest triangulation of {2 with mesh size h,, which is made of rectangles. We refine the tri-
angulation .9;_, to produce .9 by joining the opposite mid-points of the edge of the rectangles in J7_, , with mesh
size h;,l=2,3,---,L — 1. Obviously we have h, =h, ;/2(2<l<L -1). We use the conforming bilinear ele-
ment spaces as the coarse-grid correction spaces on all coarse levels [ =1,-+- L —1. In order to construct a mul-
tigrid algorithm for (1.6), we define the conforming bilinear finite element spaces S, C Hy ({2) on the grid 7,
I<L. It is obvious that S, C S, C --- C S§;,., € V,.

Because S;_, ¢ V, we must define a suitable intergrid transfer operator 1,: S;_,—V,. On the last level L, for
N

each triangulation .77, ({2,) , we define S: by the conforming bilinear finite spaces. Let S, = H S. . We take .

i=1
=Y, and assume h; = h.
Let G,* S,_,—S, be the usual nodal value interpolation operator (see [6. Lemma2.1]). The operator G,
has the following property.
Lemma 2.1 (i) |[Gwl,<Clvll,,VveS, ;
(ii) [lv -Gl <Chlvll,, Yves,_,.
Proof Please refer to [6].
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Let the operator F}:S;—X,(£2,) be the usual nodal value interpolation operator, i. e. ,
IF;vds = Jvds, Vv e S;,

where e is an edge of Ke .7, (£2,).

Based on the operator F,, we define the operator F,:S,—X, () as follows:

Fo(2) = (Fyo, P, Flv), Yo e S,

According to the estimate of the interpolation operator and the inverse inequality, we can obtain the follow-
ing lemma.

Lemma 2.2 |lv-Foly<Chivl,,IFwl, ,<Clvl,,VveSs,.

It is necessary to define the operator J,:J, =F, o G,:S,_,—X,(02).

Next define the operator E, : X, (2) —X,(2) by

fEh(v)ds = {'[Q””(Ul"m(k) _vl"m(l))ds’ € € 8y muys

0, otherwise.
Then Yve X, (£2), let
v =+ Z E, (v),
5,"([)21"
we can check that v* e V. In fact, for any w e M"(8,,,,) , we have

L vt b, wds = j vls,,@ds +j (Ey(v)) 1, ods = J; u)vlﬁmwwds +L Q. (vl , —vls,, )ods

m(1) Bm(1) (1) m(1)

= L vl ods + f

m(1) Bm(1)

.
—J’ v Im(k)wds.
Bm(1)

After the above preparation, we can define an intergrid transfer operator I, :S,_,—V, as follows:

Lv = Jv+ 2 E,(J,v), VveS,..

Smiyel
Define the operators A, §,—S, and Qy: SL_(I)—>S,,Z =1,---,L -1 by
(Agu,v) = a(u,v), Vu,w e S,,(Qsu,v) = (u,0),uel, ,,Vves,.
Define the projection operators Q,_, ,P,_,: V,—S,_ by
(Qu,w) =(u,w),ueV,,YveS, _ ,a(P_uv) =a(ulpv),ueV,¥VveS,_, (2.1)

Using the similar technique in [7], we can construct certain smoothing operator R,: V,—V, such that

(vlm(k) —11|5m“))wds =f vl wds

Ym(k
(1) ‘m(k)

C/\L(v,v) < (Ry,v), Vv e V,, (2.2)
h

a,(RAv,v) < 0a,(v,0), Yo eV,, (2.3)
where A, is the largest eigenvalue of A, and # (0,2).

Similarly, on the coarse spaces S;({=1,-,L ~1), we can construct the smoothing operators Ry ;S5,—S,

such that
(1) C3-(0,0) < (Ryp0), Yo € 853 (2.4)
i
(2) a(RsAsp,v) < 6a(v,v),Yv e S, (2.5)

where A, is the largest eigenvalue of A5 and 6 (0,2).
Now we introduce our V-cycle multigrid algorithm as follows.
Given g e V, define B,g by
(1) Setx, =0, 2" =2""' +R, (g -A,x""") ,n=1,,m;
(2) Define 2™*' =x™ +1,q, whereq = M,_,Q, (g - A,x™) ;
(3) Set Y’ =x"""andy" = y"" + R, (g -A,y""),n =1, m;
— 4 —
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(4) Define B,g =y".

The operator M, _, in the above algorithm is defined as follows.

Let M, =AS‘1l , for a given g, €S, ,M,(1=2,---,L —1) is defined by

(i) Set x, =R,g,;

(ii) Define M,g, =x, +p, where pe S, , is given byp = M, Qs (g, - As%,).

We can see that on each coarse grid space S, only one smoothing step is need. It is easy to check that

I-BA, =K;(I-LP,, +1,(I-M_A; YP,_)K}. (2.6)

3 Convergence Analysis

In this section, the convergence analysis of the V-cycle multigrid method is given. Lett, ,: C(£2)—S,_; be
the bilinear interpolation operator. First,we prove some Lemmas.

Lemma 3.1 For the operators I, ¢, _,, we have

(i) Ly ~vl,<Chlol,, 1ol ,<Clvl,, YveS,_;

(ii) lle,_ &=L, £, <ChIEl,, Y Ee H () NHy (D).

Proof By the definition of /,, we get

o=l = [Jo-v+ 3 EG) |, < 1w -oly+ ]| T EGw) ] (3.1)
Sm(pel dmp el
Using the definition of J, and Lemmas 2.1,2.2, we obtain
IJ,o =olly = IF,Gw - G + G —vll, < ChI Gl + Ch1 vl < Chlwl,. (3.2)
Using norm equivalence we derive
LACDIETS) QExhwdn - B(LQALMIMH (Ji) 15,,)ds)?
€3n(j) € &3m(j)

“0 Ym

= Ch”om((jh”) lym<) (]hv) [ m())”() Ym s Ch“(]hv) |7mm - (th) Ia

m(j)

Ch(“(-]hv) ,ym(, - Bm(j) ”o,ym I|v|5m(,') - (J},v) I,;m()”() Ym?’ * = Ch(Kl +K2)'
(3.3)
By trace theorem and (3.2), it follows that

K, < Ch”'“"%,j' (3.4)

So we only need to estimate K,. Owing to v e H,({2), then
[ 1y =01 B = 1) 1y =1 [, < CHllE,, (3.5)

(3.3) ~(3.5) gives

IE,(Jw) 12 < CR*(Jlol}, + ol ) (3.6)

then

|| 3 E(]hv)H Chlwl,.

Sm(yel

By the inverse inequality, we can see that the first inequality of Lemma 3.1 is valid.
Arguing as lemma 4.3 in [8], we can prove the second inequality.
By the definition of P,_, and Lemma 3.1, we can deduce the following lemma.
Lemma 3.2 | Ppwl, sClwl ,,VveV,. (3.7)
Proof VYoveV,, we have
I Pwl? = a(P_w,Pv) = a,(v,[,P,_v) <l vl | LP_wl,,<Clol | P_pol,,
and then we can obtain
P wl,<Cluol,,
By (2.2), (2.3) and a similar argument of Theorems 3.6 and 5.1 in [7], we have
Lemma 3.3 For any ve V,, it holds
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c ”AhKI’?”"?)
Ay

where K, =1 -R,A,, and m is the number of smoothing steps.

< (1~ K)K7o,Kv) < Cia,(v,0),

By a similar argument in [9], we can prove
Lemma 3.4 For the operator / - M, _;A;,_ , we have
la,, ((I- ML-lAsL_,)”,U) | < 8y (v,0),Vv e Sy,

where the constant §, € (0,1) is independent of the mesh A and the level L.

Let {)Lj};.v:’\ and {goj};v:"l be the eigenvalues and corresponding normalized eigenfunctions of 4,, i.e. ,

Ah¢j = qu’j’ j=1,-,N,,
and
(‘Pi9¢j) =8,
where §;; is Kronecker symbol.
My M

For any ve V,, we write v =j§c)-goj. Let A =j§,1)t;cj¢pj, then we define the following discrete norm on the

space V, :
s
”v”:’h: = (A;”,”) 2,
It is easy to see that
1
loll, = @ (v.0) 2, ol = lolly: (3.8)
Lemma 3.5 For the operator P,_, defined by (2.1) we have
”'U - PL-1'U“()\s Ch"””],h’ Vv eV,
Proof Consider the following auxiliary problem

{_A§ =v_PL-lD7 inﬂ, (3.9>
£=0, on a2
By elliptic regularity property (1.3) we have

”f”z = C”'U - PL_l'U"o' (3.10)

On the other hand,
”1) - PL_I'I)“(Z, = (- Af,v - P v) = a, (€ -t 46,0) +a,(4,,¢ - Lt €,0)

2

d
+a(t, & -&,Pv) + Zf z gxﬁivcos(n,xi)ds =1L +L + 1 +1,

KeF oK i=1
An application of Lemma 3. 1, interpolation estimate [ 10], and (3.7),(3.8),(3.10) yield
I [i S Ch"v - P(,-[””o ”v"”,-
So we get Lemma 3. 5.
Lemma 3.6 Forall veV,, we have
”'U = IhPL-lv”Lh < Ch "vllz,h'
Proof By Lemma 3.1 and Lemma 3.5, we get
”1) - I},PL-{U”() = ”U - PL_1V||0 + ”(1 - Ih)PL_lv“() = Cth”H. + Ch”PL_lU"l = Ch”v“lh
On the other hand,

"1) - I;.PL_W”L;, = wsV;..slllfaII)h,;.ﬂ ah(” - IhPL—lv’w) = wth,SIIlf}:l'h,ﬁl ah(”,w - IhPL—]w)
= sup ”7)”2,}, “w - I;.PL_lw"o < Ch Ilv”z,h'

weVy, lwli,p=1
The proof is completed.
Finally, we show the main result of this paper.
Theorem 3.1 For any § e (§,,1), if the smoothing number on the last level is large enough, then
I'a,((I -BA)v,0) | <b6a,(v,0),Vv eV,

_—f —
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where the constant §, € (0,1) is independent of the mesh h and the level L.

Proof Let v =K}v, by (2.6) and Lemma 3.4, we get

| a,((I-BA,)v,0) | <l a,((I-LP,_)v,v)|+ a’((l—ML-IASL_l)PL-l;)’PL-I;I) |
<l a,((I-15LP, )v,0) | +8 | a,(I,P,_v,v) |
<(1+8) ! a((I-LP,_Dv,0) | +8,1 a,(v,0) I.

Lemma 3.3 and Lemma 3. 6 imply

14,2l

L a,((I=1,P)o,0) | < Chllol,, ol = C(—
h

L.
)= o],

m L. 1
< C(a,((I - K) Ko, K30)) F [l , < € mm(v0).
m

Then, if m is large enough, we have

C(1 +6,)
Jm

| a,((I -BA,)v,v) | =< ( +8y)a,(v,0) < ba,(v,v).

Remark 3.1 The uniform convergence rate is proven, which is independent of mesh size and mesh level.

4 Numerical Experiments

In this section we present the results of numerical examples to illustrate the theory developed in the earlier

sections. These numerical examples deal with the poisson equation on the unit square. For the problem (1.1),

let 2

=[0,1]x[0,1], 2, =[0,1] x[0,0.5] is mortar sub — domain, 2, =[0,1] x[0.5,1] is non-mortar

sub-domain. In this test we assume f=2y(1 —y) +2x(1 —x). Obviously, we have the exact solution as fol-

lows:

u=axy(l -x)(1 -y).

Table 1 shows the number of iterations required to achieve Table1 Iteration numbers for the V-cycle multigrid

the error reduction 10 ™, where the starting vector for the itera-

tion is zero. In the following table, h; is the mesh size of level L

RiY Ry CG itery  iter,

4 2 7 6 5

L

2
in ,(4£2;). CG is iteration steps of conjugate gradients method. j 18 p ; Z Z 2
iter, and iter, are the numbers of iteration steps for the V-cycle 5 3216 2 7 6
multigrid at level L, with damp-Jacobi, SOR smoothing opera- 6 64 32 8 8 6
tors , respectively.
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