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Abstract; A characterization of distributive lattices, Heyting algebras and Boolean algebras was given by means of an e-
quivalence relation defined on them. Furthermore, some interesting properties of Heyting algebras and Boolean algebras
were obtained.
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0 Imntroduction

Boolean algebra is an important notion of order algebra and logic, which was studied firstly by Boole in
[1]. The definition of Heyting algebra was intreduced by Heyting in connection with his formilization of intu-
itionistic propositional calculus in [2]. It is well known that the class of Heyting algebra contains the class of
Boolean algebra, and is contained in the class of distributive lattice, but it is not so obvious because they are
presented from different views. In this paper we give a uniform characterization of them by means of an equiva-
lence relation defined on them. Furthermore, we get a decomposition theorem for Heyting algebras and Boolean
algebras.

Recall that a lattice L is a Boolean algebra if it is distributive in the sense that,

sA(yVz) =(xAy) V(xAz), for all elements x, y, zeL
and every element x has a complement ¥ in the sense that
xNy=0andxVy=1.
A Heyting algebra is a lattice L satisfying the following conditions:

for every element a, the function x > a Ax;L—L has an upper adjoint.

By an interval [p,q] we mean the set {x|p<x<gq}. For a general background on distributive lattice and set

o

theory, we refer to [3] and [4].
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1 Main Results

Let A be a lattice. For any element a ¢ A , we define a two — element relation R, on A as follows:
bR, if for any x €A, a Nx<bea Ax<b' .
It is obvious that R_ is an equivalence relation, and each equivalence class [ b] of b has the following properties :

(1) [b] is an ordered convex set of A;

(2) Foranyxe[b], aAx= alAb, andaAbe[b];

(3) [bINnla ={aAb};

(4) [b] is closed under arbitrary meets in A if they exist, moreover a A b is the minimal element in [ 5] ;

(5) For each b, b’ €A, we have bR.b' iff aAb= aAb'.

Lemma 1 If A is a distributive lattice, then R, is closed under joins for any a € A, i. e. for any x,
[k ], %, e(k,], we have x, Vx, e [k, V&, ]. .

Proof Ifx, e[k ], x,e[k,], then we have a Ak, =aAx,, a Nk, =a Ax,, moreover a A (x, Vx,) =
(aAx )V {(alhx,) =(alk)V(alk) =a Ak Vk),ie xVx,e[k Vk,].

Lemma 2 If A is a Heyting algebra, b e A, then we have:

(1) bR, (a—b) , moreover, we have bR,b’', for any b, b’ €A iff (a—b) =(a—b")

(2) (a—b) is the maximal element in [5], moreover, [b] =[a Ab, a—b].

Proof (1) HaAx<b, thenaAx<(a—b) since b<(a—b). Conversely, if a Ax<(a—b), then
alNx <al(a—b), i.e. aAx<<a Ab<b, by the definition of the relation, bR, (a—b).

(2) For any element b, e [ b], since a A b, <b, and bR, b,, we have a Ab,<b, so by<(a—b). By (1),
a—be[b], so (a—b) is the maximal element in [b].

In locale theory [ 5], the map @ —( - ) : A—A is a nucleus on locale A, the corresponding sublocale is
harder to describe. Denote A/R, = {[b] |b e A} ordered by the inducing order in A, we have:

Corollary 3 If A is a Hetying algebra , then A/R,= | a={a—blbeA]

Remark Note that the isomorphic maps between | a and {a—blbeA| are fix +> (a—x), for any »
€ laand g:y — aly, forany ye {a—blbe A}, forthat a A (a —x) =alx=x, a—(aly) =a—>y=
.

Definition 4 We say an equivalence relation R, on A with property P, in sense that, for any b e 4, we
have

(1) [b] is a order convex set in A;

(2) 1[6]1N Lal =1;

(3) R, is closed under joins.

If condition (1) is replaced by (1'): [b] is an interval in A, we call that the relation satisfies property P,.
Furthermore, R, has property P, if a\V m =1 for the maximal element m in [5].

Distributive lattices, Heyting algebras and Boolean algebras have the property P,;, P,, and P, respectively.
The question whether the converse is true is raised naturally. In the following we give a positive answer for it.

Proposition 5 lattice L is distributive iff for any a € A, there exists an equivalence R, on L with the prop-
erty P,.

Proof From the remarks above we only need to give the sufficiency. Let [ 5] be an equivalence class of R,
and b’ € [b], by the condition |[6]N | a | =1, we have a Ab =aAb" e [b]. For any two elements b,c e L,
suppose that be [k, ], ce [k,], wehave aAb=a Ak, e[k, ], aNc=aNk, e[k,]. By the condition (3) of
property P,, (aAb)V (alAc) e[k Vk,] andbVeelk VEk,], thenaA{(aAb)V(aAc)] =(aAb)V
(alNc)=aA(bVec).

Similarly, for Heyting algebra we have:

Proposition 6 Lattice L is a Heyting algebra iff for each a € A, there exists an equivalence R, on L with
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the property P,.

Proof (=) Trivially.

(&) : By the definition of Heyting algebra, we only need to show that there exists a maximal element in
{xla Ax<<b}, for any elements a,b e A. Let [ k] be an equivalence class of R,, the maximal element denoted
by m, the minimal element denoted by n. From the proof of proposition 5, we have:

forany xe [k], aAm=alAx=ne[k],
L is distributive. Suppose that b € [k, ] and the maximal element in [k, ] is m,, thena Am, =a Ab<b<m,. If
there exists an element x € A such that a A x<b, but x<gm,, then x\Vm, >m,, so x\Vm, is not in [k, ]. Sup-
pose x\Vm, € [ky], thenaA(xVm,) =(aAx)V(aAm)<bsm, <xVm, sobe[k,] and [k ] N[k ]
# (J, it is impossible, so m, is the maximal element in { xla Ax<bl.

Proposition 7 Lattice L is a Boolean lattice iff for any a € A, there exists an equivalence relation R, on L
with the property P,.

Proof (=) Trivially.

(&) By Proposition 6, L is a Heyting algebra. Suppose 0 € [ 5] and the maximal element is m, then a V m
=1, then we have m = a—0, i.e. a has a complement element m.

From the equivalence relation characterization of Heyting algebra and Boolean algebra, we can get the fol-
lowing interesting properties, which give a lively description of them.

Proposition 8 If lattice L is a Heyting algebra, then for any element a € L, there is a family of intervals
{[pi,q:1};cs such that for any i, je1,[p;,q; ] N[p;,q;] =B, 1[p;,q. 10 Lal =1, and L=U{[p,,q.]1 )

Proposition 9 If lattice L is a Boolean algebra, then for any element a € L, there is a family of intervals
{[piq:1}icrsuch that for all i, jel, [p;,q:1N[pisq.) =@, [pisg:]=[pise.], 1pglN lal =1, ¢ Va
=land L=U{[p;,q:]}.cre

Proof By Proposition 7, there exists an equivalence R, on L with property P,. The proof of Proposition 6
implies that for any be [p;,q;], p;, =aAb, q,=a—b, and [a] =[a,1], we only need to show that the equiva-
lence class [ b] is isomorphism to the equivalence class [a]. Now suppose we have two elements x, y with x €
[a], ye[b], define f;:[b]—[a], provided that f(y) =aVy; g:[a]—[b], provided that g(x) = (a—b)
Ay. It is obvious that f and g are order preserving, then we have g(f(y)) = (a—b) A(aVy) =[(a—b) A
al]V[(a—b) Ayl =(aAb) Vy=y; f(g(x)) =aV ((a—b) Ax) =[aV (a—b) JA(aVx) =x, i.e.
g f=l[b]7f'g=1[a]’ so [a]=[b].

Remark If L is a distributive lattice, then the condition is sufficient. We only need to define the relation
R, on L as follows:

b~b', ifforsomeiecl, pe(p;,q;] and ge[p;,q;].
It is easy to verify that R, has the property P,.

Assume L be a Boolean algebra, a € L, then 1 a and | a are Boolean algebras, moreover, Tax laisa
Boolean algebra. By the proof of Proposition 9, we know that an element x of L is uniquely determined by a V x
€ Taand aA xe | a. Conversely, for any (x, v) € 1 a x | a determined an element (a—y) Ax of L. So
we have

Corollary 10 Let L be a Boolean algeba. For any aeL, L= Ta x | a, moreover, |L| =| lal +11al.

Corollary 11  Let L be a Boolean algebra. If |L| <%, then for some set X, L=2".

Remark In the theory of continuous lattices [ 6], Boolean algebra L is isomorphic to the algebra of all
subsets of some set if and only if it is continuous. Since a finite distributive lattice is continuous, we can obtain
the corollary. However, by the Corollary 10 and finite inducing, it is obvious.

In[7] and [8], the category of Boolean algebras is isomorphic to the category of Boolean rings. The partial
order on Boolean rings is defined by a <b iff @ + b = a. By the Corollary 10, we have;

Corollary 12 If R is a Boolean ring, for any ac R, A={xeRla-x=x}, B={xeRla x=a}, we
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have IL] = 1Al - |BI.
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