30 1

( ) Vol 30 Na 1
2007 3 JOURNAL OF NANJING NORM AL UNNV ERSITY (N atural Science Edition) M ar 2007

Torus Quantization in LocalM ode Region for Two
K netically Coupled M orse O scillators

Yang Shuangbo

( School of PhysicalScience and Technobgy, N anjngNomalUniversity Nanjng 210097 China)

Abstract Thi paper reports them ethod and the results of the to1us quantization in bcalmode region for a systan of o

kinetically coupledM omse oscillaiors It & found that the semichssical result agrees very wellwith the quantum result as

the quantzing torus & far fran resonance and bcalnomal sepamtrix
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0 Introduction

The stretch motions of a symm etric triatam ic molecular systan with smallmass rat, between the light atan

and the heavy central atan, can be well approxmated by wo knetically coupled M orse oscillators w ith the fot
bw ng H am ilionian

~ ~
p 67 P -B% ~~
H:%‘+D(1-e ‘)2+%2+D(1—e )% + apipa (1)

which can be scaled nto the follow ng fom
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o

by the transfom ations

H 1 ~ ~
€=" pi=—p, x=Db, T=Dy
D JmD

where 6=ma= Mcose is the couplng constant that relates the finite massM of he central atam. m is the re-

duced mass of he light atam and the heavy central atan. 0 is the anglemade by the o bonds of themolecu le
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D is he dissociation energy of aMorse oscillator B isM orse paraneter of the system, Y= wo D s a system
dependent constant with @g= 28°D /m being the small oscillation frequency of the M orse oscillator For small

coupling parameter § phase space can be classified into localmode and nomalmode regions C lassicalmotons
n phase space can be tori ( regularmotion), periodic oibits and chaotic trajectories ( irregularmotbn). As §
becanes b gger the area of resonances w ill grow by eating up more and more localmode tori This systen was
first stud ed w ih sinp lifications by Jaf€ and B run et and then by SbertIIl, Hynes and Reinhardt”, chssi
call. Recentl, we studied his systen by constructing sem iclassicalwave functions for quantizing torus for un-
coupled system torus 7, coupled system orus | regu lar region and cantorus ' i chaotic regbn At hgher
enegy and strong coupling this systean has many stiong resonances n phase space to canpletely detem ne the
correspondence between quantum states and phase space stuctures one needs to do sem ic hssical quantizaton
nun erically

This paper reports in detail themethod and the results of sen tlassical quan tization for energy e genvalie for

tori in localmode region for a systen of wo k netically coup kdM orse oscillators

I Tows Quantization n Regular LocalM ode R egion

1 1 The EBK quantization cond itbns

If a torus corresponds to a quantum state then it satisfies the EBK quantization conditons

1

[1:2_].[€¢.(p1d)61+}72dx2):h¥[n1+—;], (3)
1

12=2_J'[Cf(pldxl+p2dx2)=h{n2+_ﬂ’ (4)

where € and C, are wo topologically ndependent circuits awund the toms in phase space Y is systan depend-

ent constant for the wo kinetically coup led M orse oscillators it is given by Y= @, A D.
L 2 Them ehod of torus quantization n localmode region

To canpletely specify a trajectory n phase space one usually needs four variables which can be taken as
the coordnates and mamenta of a trajectory. It is necessary to have three ndependent variables to specify a torus
for an energy consewatwe system. The number of independent variab les can be further reduced by nspecting the
phase space stuctures because a torus consists of nfinite number of trajectories SOS provides a good way to
dentify a torus especially the localmode tows of this wo knetically coupledM orse oscillators system, snce in
a0S atx;=0Q p;> Q all the localmode tori have ntersection pont on the linex,= Q Sq if one starts to
search localmode torus abng the Ine ofx,= 0 n the SOS atx;=Q p;> Q the ranaining ndependent variab le
isp> bragiven energy € To find a quantizing torus one needs to change system energy & so thata quantizing
toms exists n that energy This enewgy is called sen iclassical energy of the systan Therefore, one needs wo -
dependent variab les to specify a quantizng torus which can be chosen as (pi1, p2) or(€ pi) or (€ p2).

The circuitsCy and C, in equatbns (3~ 4) are taken to be the ntersections of the torus w ith SOS atx, = Q
p2> 0 and SOS atx;=Q p; >0 The quantization cond itions becan e

L(Ef) = — pldx]=[n1+—;]”) (5)

2T Gh

hoes) = 2 = [ Ao (9

where f is a finctbn ofp, orp, of the quantizng torus and € is he saniclassical eigenenergy corresponding to
his torus
Since each acton is a function of systen energy € and the paraneterf of the torus n phase space, search ng
a quantized torus is to search a torus in phase space by varying € andf so that he quantization cond itions (5) and
(6) are satisfied smultaneously Numerically this is to first set a guessed energy € and a guessed palrameterfk
— 34 —
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of the tows in phase-space and then to use N ew ton-R aphson m ethod to converge to the twe eigenenergy and the
true quantizing torus A ccording to New ton-Raphson akorithm, the first correction to the guessed eneigy € and
the guessed paremeterf* of the torus is gven by the solitbn of the follbw ing linear equatons

o (€.f ) A(E.f ) C o _[ _1]

e ¥ {Aﬁ:_ L(e.f )—|n+ 5 h .
o e,/ ) ane S )| Laf ,2(g,f)_[n2+_1}h ’

RE . 2

and the new energy and the new parameter of the torus are given by
€ <« € + 4§ (8)
St o+ af (9)
The second correctbn to the enegy € and the paran eterf of the torus canes fum te solution of he sane lnear
equation (7) butwith a nev guessed energy and a new guessed paraneter gven by (8) and (9). This process

w ill be repeated formany tin es until the required precisbn in the follw ng

errf: [|—[n1+_;]‘[h Iz—[n2+_;]Yh

ertx = | € — El+1f - fl< & (11)

has been obtained The partnl differentiations in thematrk elements n equatbn (7) are calculated num erically

+

< § (10)

or

by 3-pontmethod Fora good precisbn onemay use S-pont method but it will use more CPU tim e
1 3 The action calculation for localmode torus

The actons I; and I, correspond to areas enc bsed by the cbsed circuitsC andC, m ade by the intersectons
of a trajectory w ith SOS atx,= Q p>> 0 and SOS atx; =0, p; > 0 respectvely To numerically calculate the

areaw e start fran Lagrange polynan &l nterpolation fomu d °

i@(x)dxz j}?n(x)dx: jz‘sﬁmg(xk)dx, (12)

w here
() = (x-x0)(x—x1) (5 - %)
O () = (0= x0) (%0 = %0 ) e (%0 = Xt ) (W = Xpar ) oo (34 = %) -
P.(x) B an" order Lagrange polynan iaj a, b are integraton lmits and usually (b— a ) is very snall to keep
the numerical value calculated approxinately at the right hand side of ( 12) cbser to the exact ntegral at the left
hand sile of (12). Forn= 2 P, (x ) can be written as the follow ing

= (x- Sk )xa (xk)g(xA)

(x =1 ) (x = x2) (x — x0 ) (x— x2) (x = x0) (x = x1)

(ro =5 (xo- 2 ) T o (- ) T T (w6
and the result of the ntegral n ( 12) is

Pz(x)Z

! _ g (x0) r(x;—xg) (x1+x2)(x§—x(2))
“[Pz(x)dX— (xo—x1)(xo—x2)|_ 3 - > +x1x2(x2—xo)i|
g(x1) [ (x5 —x0)  (wo+ x2) (%2 — %)
+ (xl_xo)(xl_xz)_ 3 - 5 +x0x2(x2—xo)]
g (%) [ (vs—x0)  (%o+ x1) (x3—x0)
* (22— x0) (22— 21 )L 3 B 2 +x0x1(x2—x0)i|, (13)

where %o and x, are the o nearest neighbors ofx;, then he total area of the cbsed curve is the sum ofall small
areas lke the one given n (13) with the care of directions of the line ntegrals n (5) and ( 6).
The errors ntroduced by the polynan ial appwxmation to the unknown finction g (x ) can be analysized fux
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ther fum the resdue error finctbn. A's an approxin ate estinatg one can take the case of equal step sizg the

restue (or truncatbn) error functbn is given by

Resfe] = Je(x)di- Po(x) e = Jg(%%%?o()dx

Forn=2

5

Res/g] :—%ng (M), fora< N< &

Suppose gM) (x) does not change verymuch n [a b], then the mproved ntegral value is gven by

=1y + f—il(]zw - 1),

where Ly and Iy are ntegral valies gotten by partitbning the ntewval [a b] nto 2V equal parts and N equal
parts So the error is about (Iny — L ), if it 5 very snall one will say that the calculatbn is accurate enough
L 4 The consideratbn on the mitial input to the search program

Sice the convergence of New ton’ s method is stiongly depend ng on how cbse are the guessed energy and
the guessed parameter of the tows to the tme eigenenergy and the paran eter of the quantizing tous a reasonable
nital nput to the search progran & very mportant This search progran searches an mitial action vectorwh ich
is quantized according to (5) and ( 6). Forweak couplng system, a zeroth order energy correspond ng to the
actbn vector to be searched shouH be a good choice because the defomation fran the zeroh order tows is very
gnall Searchng a quantized torus of stiongly coupled system is usually slow as the quantized tomus ofweak cou-
pling systan has to be found first and as an nput to the search progran of strongly coupled system. A ccord ng to
the analysis given n section 1 2 one can chose ndependent variables ( € pi ) or( € p>). Once he energy of
the systan has been chosen the paraneterf of the toms can be detem ned fran the fullH am ilionian of the sys-
ten. In he search follwng 1 chosef another way to representp; to be the ratb of kinetic enegy of the first

M orse oscillator to the total energy of the systan, i e

2
_n
T ¢ (14)

which is related to the positon of the tomusw ith the aid of SOS atx;=Q p; > Q The nitial nputs to the search

programn then are

X1 = Q (15)

x = Q (16)

pi= e (17)

pr=- i+ 28— (1- 8 )pi (18)

w here

A

hoy’

€ is the zeroh order energy for the system. I choose here the man entum maxim a as the set of nputs to the search
progran. One could also choose tuming points of he woM orse oscillators as an alternative input it show s that
the fnal resulis are san e for bothmethods of nput

Note that the nitial input ( 15) ~ ( 18) alvays gives localmode towus as enegy and the parameter of the
tos change a little bit because each of the localmode tra pciories has an intersection pointw ith Inex,= 0 n the
SOS atx1=0Q pi>0Q
— 36 —
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1L 5 Result and dscussbn of toms quantizatbn n the regu hr localmode region
In this subsectbn we w ill show sam iclassical resulis of wo k netically coupled M orse oscillators w ih cou
plng paraneters 6= — 0 014 n Table 1L O ther paraneters used in the sem iclassical calculatbon and quantum
calcuhton are given by
D= 884x10"J= 44505 216 an ,
B=2175% 100 an™,

14 -1
W =72916x10 s .
Tablel The sanichssical results in bocalm ode region for two kinetically coup led m orse oscilhtorsat 5= — 0. 014

(ny ny) €, errf err x dn, dn, €, le, - E{I |

(L 0) Q 169 00 Q 1E- 05 0. 8E- 05 0. 3E- 05 Q 8E- 06 0. 169 4 2. 44E- 04
(2 0) Q 248 53 Q 9E - 06 0. 4E- 05 0. 1E- 05 Q 1E- 05 0. 248 51 1. 50E- 05
(3,0) Q 32419 Q 7E- 06 0. 1E- 05 0. 1E- 05 Q 1E- 06 0.324 18 8 92E- 06
(4,0) Q 396 06 Q 1E- 04 0. 6E - 04 0. 4E- 04 Q 6E- 06 0. 396 06 3. 60E- 06
(3 1) Q 407 23 Q 8E- 06 0. 5E- 05 0. 8E- 06 Q 1E- 05 0. 407 4 1. 22E- 05
(5 0) Q 464 14 Q 4E- 05 0. 6E - 05 0. 8E- 05 Q2E- 05 0. 464 14 1. 00E- 06
(4 1) Q 479 18 Q 4E- 06 0. 1E- 04 0. 6E- 06 Q 5E- 06 0. 479 16 1. 77E- 05
(51) Q 547 29 Q 3E- 04 0. 7E- 05 0. 4E- 05 Q4E- 05 0.547 28 5. 92E- 06
(6,0) Q 528 44 Q 3E- 06 0. 1E- 05 0. 6E- 06 Q 7E- 07 0. 528 4 1. 95E- 07
(7,0) Q 58895 Q 5E- 05 0. 2E- 05 0. 2E- 04 Q2E- 05 0. 588 95 1. 17E- 06
(6 1) Q 611 60 Q 1E- 05 0. 3E- 06 0. 9E- 05 Q 3E- 06 0. 61160 2. 74E- 06
(52)° Q 626 57 Q 4E- 02 0. 8E- 03 0. 8E- 02 Q4E- 2 0. 626 57 5. 18E- 07
(8 0) Q 645 67 Q 9E - 06 0. 5E- 06 0. 2E- 05 Q 1E- 06 0. 645 68 2. 58E- 06
(7, 1) Q 67212 Q 6E- 05 0. 9E - 06 0. 8E- 05 Q2E- 04 0. 672 12 7. 23E- 07
(6,2) Q 0095 Q 1E- 05 0. 1E- 04 0. 2E- 05 Q2E- 05 0. 690 A 1. 01E- 05
(5 3) Q 70176 Q 5E- 05 0. 9E - 08 0. 4E- 04 Q4E- 05 0. 702 05 2. 94E- 04
(7,2) Q 75149 Q 2E- 05 0. 1E- 05 0. 1E- 05 Q 3E- 0 0. 751 49 1. 17E- 06
(6 3) Q 766 44 Q 4E- 06 0. 5E- 05 0. 2E- 06 Q 9E- 06 0. 766 41 3. 03E- 05
(10, 0) Q 74775 Q 1E- 03 0. 8E- 06 0. 3E- 03 Q 5E- 05 0. 747719 4. 14E- 05
(9 1) Q 78178 Q 5E- 04 0. 9E- 05 0. 3E- 04 Q 9E- 05 0. 78178 2. 22E- 06
(8 2) Q0 808 22 Q 3E- 04 0. 6E- 04 0. 4E- 04 Q 3E- 04 0. 808 23 6. 99E- 06
(7, 3) Q 8705 Q 2E- 05 0. 1E- 04 0. 3E- 05 Q 3E- 05 0. 82703 1. 46E- 05
(10, 1) Q0 8091 Q 6E- 05 0. 1E- 04 0. 1E- 04 Q 1E- 05 0. 830 88 3. 47E- 05
(9 2)" Q 81 21 Q 8E- 01 0. 2E- 03 0. 4E- 01 Q 7E- 01 0. 861 17 4. 57E- 05
(8 3) Q0 83 81 Q 8E- 06 0. 4E- 06 0. 2E- 05 Q 4E- 06 0. 883 81 4. 37E- 06
(7, 4) Q 898 72 Q 5E- 05 0. 1E- 05 0. 1E- 05 Q0 1E- 04 0. 898 2. 78E- 05
(10, 2) Q 910 30 Q 2E- 05 0. 1E- 04 0. 4E- 05 Q 5E- 06 0.91029 1. 09E- 05
(9, 3)" Q 936 75 Q 1E- 04 0. 5E- 05 0. 2E- 04 Q 8E- 05 0. 936 77 1. 53E- 05
(8 4) Q 95555 Q 1E- 03 0. 3E- 05 0. 2E- 03 Q 5E- 03 0. 955 % 1. 38E- 05
(10, 3)" Q %590 Q 3E- 02 0. 8E- 05 0. 2E- 02 Q 5E- 2 0. 985 86 3. 56E- 05
(9, 4) 1 00858 Q 2E- 03 0. 5E- 06 0. 2E- 04 Q2E- 03 1. 008 57 1. 06E- 05
(85) 1 02343 Q 7E- 04 0. 1E- 04 0. 2E- 04 Q 1E- 03 1. 02342 8 54E- 06
(9,5)" 1 076 34 Q 1E- 02 0. 1E- 03 0. 3E- 01 Q 2E- 01 1. 076 53 1. 96E- 04
(10, 6) 1 18995 Q 6E- 05 0. 1E- 04 0. 2E- 05 Q0 1E- 04 1. 189 93 1. 499E- 05

We also got san iclassical resulis calcu lated num erically for different couplng paraneter § and the resulis

are not reported here In Table 1, € is sem iclassical eigenenergy found numerically which is he sane for (n,
n,) and (n, ni ) states in the prin itve sem iclasssical quantization (5) and ( 6); errf is the precision reached
n the quantization errx is the precision reached n he search by Newton-Raphsonmethod dn; is the absolite
valie n the difference beween the obtaned quantum nunberwhich is not an nteger exactly and the preset quan-
wm number ni; s ilarly fordn,. €, is the average quantum energy of the becalmode doublet and (1€- € 1)
is the absolite difference betw een the sam iclassical e genenergy obtaned by prm itve sen iclassical quantizatbn
and the average quantum energy of the becalmode doubletwhich is he result of dynam ical unnelng between lo-
calmode (n, n») and bcalmode (ny, ny). Under the basis set of wo uncoup ledM orse oscillators the quan-
tum egenvalies were obtaned by diagonalizing the Ham ilionian of wo k netically coup kdM orse oscillators w ith

— 37 —
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the paraneters given above Except for a fev states as shown n Table 1, the results of prin itive sem iclassical
quantizatbn are in excellent agreementw ith the true quantum resulis Those states that do not agree w ith quan-
tum results verywell are very close to strong resonances or becalnomal separatrix where he bealmode sem iclas-
sical quantizations have probably failed It should be pointed out that state (9 3) and state ( 1Q 3) are special
n the sense that there are four quantum levels stacked together around each prin itive quantum state Because of
this the quantum states (wave functions) show strong chaos The argument here is that it must exist another
prin itive sem iclassical state which is very close to the prm itive state found and the nteractions anong these tori
states give chaoticwave functons The difference bew een state (9 3) and state (10 3) & thatstate (9 3) can
be easily quantized by EBK mle butnot state ( 1Q 3). This is because that state (9 3) is far fum strong reso-
nances so he EBK quantization conditions can be used State ( 10, 3) is different this state is very cbse to
9/14 resonance which is in turn very close to 2/3 resonance and the phase space around the state (10 3) is
chaotig it is very difficult to find this state by EBK quantizaton conditbns Another exanple is the state (§ 3)
which is very close to locatnomal separatrk even though the quantizaton conditbns ( 5) and ( 6) are satisfied
quite wel] the searched sem iclassical e genenegy still has a~ 13 an” ' difference fram the true quantum e gen-
valie This is attrbuted to the nonseparability of the system around the local- nomal separatrk It has been ne-
ticed that sam e quantum states can not be quantized prim itvely by torus quantizaton because stong resonances
n phase space destroyed the tori required to do prin itive sen iclasical quantizatbn For exanples all the stales
marked w ih except he state (9 3) inTable 1 can not be quantized by the regular EBK method because the
tori corresponding to these states have been destroyed. The correspond ng classical ob jects of some of these states
are cantori n phase space which can be quantized by quantizing period ic ob it thiough BS-EBK wle”.
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