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Analysis of a Holling-Tanner Predator-Prey System
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Abstract The pem anence and harvesting policy of aH o lling"T anner p redator-p rey m odelw ith birh puke and harves
ting effect 5 mvestigated Fist by the stoboscopic map we obtain an exact periodic so lution of the systan which has
Ricker function or Beveron-Holt function Further by the Floquet theoran, we prove the boundary peridic soluton is
always unstable And by the can parkon theoran of inpulsive differential equation we obtain te conditon for pema-
nence of the systan. At last we gain the m axinum harvesting effort for the system.

K ey words HollingTanner predatorprey system, birh pulse extinction pemanence themaxinum harvesting efrt
CLC number 0175 12 Docunent code A A rticle ID 1001-4616( 2007) 04-0010-07

Holling-Tanner

EEE R 5

(1 , 537000)
(2 , 116024)
[ ] HollngTanner —
s s Ricker  Beverton'H olt
N F bquet ) N N
[ ] HollingTanner E— ) ) > >

0 Introduction

-3

Predatorprey systams have been studied in many literatures ' Generally the HollingTanner predator

prey model is descrbed as

x = x(B(x)—d)—ﬁ,

(1)
o _ X
y=y(s=h7")
where x, y stand for prey and predator density respectively ﬁ isHollng-1I functional responsg d> 0 is the
x

death rate constant and B(x)x is abirth rate function of the prey populatbn with B (x ) satisfying he Dllow ng
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basic assumptions forx€ (Q o ): (1) B (x)>Q (2) B(x) & continuously differentiab k withB/(x) < (
(3) B(0" )>d+ E>B(). Exanpks ofbirth functionsB (x) found i the b blogical literature [ 4] are (1)

Bi(x)=be ™, wiha>Q b>Q (2) B,(x) :_-I—Lm’ withp, ¢ m> Q Functions By andB, withm = 1 are
q+x
used i fisheries and are known as the Richer function and Beverton-Holt functbn respectively

1 M odel

M odel (1) mnvariably assumes hat the prey speces reproduce throughout the year whereas it is often the
case thatbirhs are seasonal or occur n regular pulses Thus the contnuous reproductibn of popu lation is then re-
moved fran the trad itbnalmodels and replaced w ith a birth pu ke, that is reproduction takes place n a rela
tvely short perbd each year Consequently mpulsive differential equations ( hybrid dynan ical systems) pwovile
a naturaldescription of such phenanenon Recently the mpulsive equatbns are bund n alost every danamn of
app led sciences Numerous exanples are given in Banov’ s and his collaborators’ books™. In this paper we
ntroduce aHolling-Tanner predator-preymodelw ith prey birh pulse and rato harvest as folbws

x= —do— 2L _ Ex,

A+x
1Zn

y=y(s=hL) (2

x(t" )=x(t)+B(x(t))x(t) t=n
where n€ N, e period of mpulsive effect is L, E is the harvesting effort
In this paper ourmamn pumpose is to study the extincton and pemanence of systam (2). The organ izatbns
of the paper are as folbws In next section usng the discrete dynan ical system detem ined by the stroboscop ic
map we obtain an exact periodic soluton of the systan which has R rker functbn or Beverton-Holt finction
M oreover by the Floquet heory and a canparison theoram, we estab lish the sufficient conditions under which

the boundary perbdic solution is alvays unstable and systan is pemanent In the last section, we obtain the

maxmum harvestng effort br the system
2 Extnction and Pemanence

Lety=hy c=h" 'c we can write system (2) n the follov ng fom

o _ ey
x= - (d+FE)x 1qx
Zn,

y=y(s=L) (3

x(t )=x(t)+B(x(t))x(t), t=n
In the absence of the predator system (3) reduces to
x=- (d+ E)x, t%n

x( )=x(t)+B(x(t))x (1) t=n
W e solve the prey population n systen (4) beween pulses

- (d+E)(t-n)

x(t)=x,€ , i< Sn+ 1 (5)

(4)

w here x, - x(n" ) is the initial popu lation at tine n. Ushg the second equation of systen (4), we deduce the
stroboscopic map such hat
Xy =3, 6 E) (1+B(zm € (d+E) )= F(x)
where F(x) =xe (@£ (1+B(xe (48 )).
IfBi(x)=be ", then

- (d+E) -x, e- (Ad+E)
Xne 1= Xn € (1+ be ™

)- (6a)
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IfB,(x )=—L=, then
qg+x

Xn+ 1= Xp e_ (@ E) (1+ p—(d+l€) m)‘ (6b)
g+ (x e )

D ifferential equatbns ( 6a) and (6b) descrbe the numbers of prey popu lation at a pulse n tem s of valies
at the previous pulse We arg n otherwords stroboscopically sanpling at its pulsng perbd The dynan cal
behaviors of (6a) and (6b), coupled with (5), detem nes the dynam ical behavior of systan (4). In the fol
bw ng we will focus our attentbn on systans ( 6a) and (6b). We will focus here on b for he Ricker functon
and p for the BevertonHolt functbn and document the changes in the qualitative dynam ics of ( 6a) (or ( 6b))
asb (orp) varies Firsg the trvial equilibrum x. =0 isaly ays a solution for equatbn (6a) (or (6b)). For
he Ricker functbn when b is snall enough that is by = -1 bE(Q b ) x. =0 & globally asymptotically

d+E

stable And when b> by, equation (6a) has stab le positve equilbrum x, = ¢ h(%l) For the Bever
arE

d+E

tonHolt function whenp<po=qg(e - 1), x =0 s globally asymptotically stable Andwhen p> po, equa-

* +E L . * e * .
ton ( 6a) has stable positive equilibrim x, = Fa (T:Ll_ g)m. Obviousl, x, satisfesx, >F(x)>x i
ok _

X, >x> 0 x> F(x)> x, fx>x . Fum [4], x, is globally asymptotically stable Therefore we have the
follow ng lemm a

Leanma 1 Letx(t) be a solitbn of systen (4) wih nitial condition x (0) > Q

(i) ForB (x)=be ", ifb< by thenx(t) ~ 0ast oo Ifb> by, then system (4) hasunique asym p-
totically stable positve soliton

d+E

Z(t)=é" n(

- (d+ E) (1-
)e (et Yo on<aSn+ 1

é1+E -1
(1) ForB, (x) =—Lm, if p< po, x(t)_) 0ast oo Ifp > po, systam (4) has unque asymptotically
g+ x

stable positive soluton

1
d+ E = —(d+E)(t-n)
: > Yon< <n+ 1

n(t)= " (E ) e

Fran the above weknow that ifb> bo( orp> po), there exists the boundary periodic soliton (x;(t), 0)
of system (3). Next we will discuss that (x, (¢), 0) is alvays unstable

Theoren 1 For systan ( 3), the boundary periodic solution (x,(t), 0) is alvays unstable

Proof Definingx(t)=u(t)+x,(t), y(t)=v(t), heremay bew ritten

w(t)| _ u(0)
o) =)
where @ (¢) satsfies
e (1)
-d-E -7——=~—]
%: A+x.(t)| O(1)
0 s

and @(0) =1 the dentity marx The Inearization of mpulsive subsystem (3) becanes
w(n') 1+B(x )+x, B (x, ) u(n)
v(n' )] 0 v(n))

1+B(x, )+x, B (x,
M:{ (x )44 B'(x )

0
The egenvalies of the matrk M are by = ( 1+ B(xi )+xi B/(xt ))e ("% <1 W= &> 1 Notice that b=

W e denote that

(1)
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e > 1, the boundary periodic solution (x,(¢), 0) of systam (3) is alvays unstable The proof is canp lete

d+E+ csxf

Theoren 2 (i) ForB,(x)=be ', systm (3) is pem anent proviled b> e — 1 holds true here

x, =¢&F th; (11) ForBz(x)z—%, system ( 3) is pemanent pIovﬂedp>q(él+E+m“’* — 1) holds
e - g+ x
tue, herex, = ed+E(TE1)_1_ q)".
gk _

Proof Let (x(t), y(t)) isany solitbn of systan (3) with nithlvalhiesx (0" )> Q y(0 ) > 0.

(i) ForBi(x)=be", snceb> grires L it is easy to know b> ¢ — 1 At the sme tine we can
choose a sufficiently small € such that

d+ E+ ¢sO
b> e -1

here 0=x, + € Fran the first equatbn of systam (3), we havex < — (d+ E )x, and then consider the cam-
parison systen (4). ByLenmal itis obvbus that for the chosen €> Q  there exists a sufficiently lawge # such
hat

~ +E b * °
x (1)< (1) + &< edﬁ]nT1+ E=x, +€=0, n<iSn+ 1 >0
arE

(i) ForB, (x):—_’_L,,,,, by the san emethod we have
g+ x

d+ E

~ A * M
x(t) <xs(t) + €< e (TELI— g)"+ €=x, + €=0, n< <n+l > o
P

Consierng the canparison system

%Xf%(so-y),

which has asym ptotically stable solutbny= s0, we know there is a,> # such thaty< sO fori> n; thatisy(t)
~ Owith¢ oo Hence there exists a constantM =max{0, 50)>0 such thatx( 1) <M, y(t) <M for any
solution (x( ¢), y(t)) of systen (3) with t> &

Next weshallprove hat there existm;> Q m>> 0 such that for any solton (x (¢), y(t)) of systen (3),
x(t) 2my, y(t) 2ma.

: o -
Fran the fist equatbn of system (3), we havex > - (d+%)x: — 8 x then we consider the follow ng

canparison system w ith pulse
x= — G g #n,

w(t )=x(t)+B(x(t))x (1) t=n
By Lenm a1 and the cam parison theoran'”,  there exists 5> , such that

(1) forBi(x)=be ",

(7)

b

5
e' -1

x(t) 2x(t)- € h( J—€=mi>0 n<i1S<n+ 1 1> 08

w here
xN(t)z eﬁl ]n( 6b )efﬁl(kn)
e'— 1
is the perbdic soluton of system ( 7);

(2) forB,(x)=—2=,
qg+x

~ 4 .
x(t) >x(t) - &> (—5]13—1—(])’" —e=m >0 n< Sn+l 1>op
ol —
w here
~ ¢ L s
o= (F e
el —
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is the perbdic soluton of system (7).
W e are left to prove there existm,> 0 and a sufficiently lage & such thaty (¢) 2m, for allt> 1. The pro-

bative pocess can be dvied into the follow ng wo steps
d+E

Step1 (1) ForB,(x)= be_x, ifb> e " = 1 we can choose 0<m’, < s0 such that for the chosen €>

Q sN-m’,>Q where = h(g,2 )—8

d . .
e 1), likewise we can choose 0< m’y< 50 such that for the chosen

(2) ForB,(x)= —”7 ifp> q( €

€>0 sN-m’y>Q where = ( —q)
W e are sure that there exists aty > 5> 0 such thaty () 2m’y. O thew ise ify (1)<m’, forallt> 5, fram

x= - & x. Consderng the follbw ing canparison

an
the first equation of system ( 3), 1

system

- 6w, #n,
{ . (8)
x(t )=x(t)+B(x(t))x(t) it=n

By the sanem ehod as (7), we obtan there exists {> > 0 such that
(1) forBi(x)=be ",

x(t) 2x(t)- € h( sgb 1)—8'=T‘L n< 1Kn+ 1 1> 4
&2 _

w here

- &(t-n)
eﬁl n

x(t)= 1

is the perbdic soluton of system ( 8);

(2) forB,(x)=—E—,
q+x

x(t) 2x(t)— €> (Ep—_l_ q)%— e=1 n<i<n+ 1 >0,

w here

L ~ n
x(t)_ez _Ll q)meﬁz“ )

is the perbdic soluton of system ( 8).

Fran the second equatbn of systan ( 3), we have

y‘>y(s-m—{) >0, fore> 1.

Hence y(t)_> © asi o It is contrary toy (t)<m > brallt> tn Upon that we accanplish here exists a &
> 0 such thaty (&) 2m’,.

Step 2 By the above step we are left to consider wo cases

Casel Ify(t¢) 2m’y brall large 4 then the proof is canplete herem,=m ».

Case2 1Ify(t) oscillates aboutm ', forall large § we can choose constants h> 0 and & > max{{, ) (o
is den anded be sufficiently large) such thaty(¢) <m', y(lb)=y(t+ h)=m'y andx(t)> M fori€ [0, &+
h]. Thus there existsaf € (to, to+ h) such Ihaty(t)>m—22 for€ [t t ] Assumhg; € (n, m+ 1],
m€Z,, Z.=12 ... weshall discuss the folbw Ing wo cases

() Hni+ 126+ h, fran he second equation of system (3), we have y> —m—qzy. Then y( t) >y(£ )
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exp(—m—nz(zo+h—i ))>’”—22exp(-’”—nz)'= & for €€ [1, to+h].

(1) Ifm+ 1<+ h, we obtan thaty(t)>y(t* )exp(— (n1+1 t))>—zexp( —)—Q for ¢

€ [;,n1+ 1]. Fort€ [m+ 1 t+h], there exists ¢ € (m+1 t+h) such 1haty(t)>—2 bri [n+

1 ¢ I AssumingiM € (ny m+ 1], na>ny, nze Z.. By the sanemethod, it isnotdifficult to obtan that

ifno+ 12 o+ h fort€ [t , 0+ h), y(t)> = 2 exp( - ——— q ko ifnat 1< n+ b fort€ [t , nma+ 1],
# mlz 271,2 . ..

y(t)>y(t )>7exp(—_n). Fort€ [ny+ 1, &+ h], we repeat the above process Because h is lin ited

consequentially, here exist;> 0 and n,€ Z, such that 4€ (n, m+ 1] andn,+ 126+ b, thenwe can de

)

2

ducey(t)> Bl exp(
/ ’

. n
Ow ng to the randam icity of &, we can conclude there existsm :%exp(— _rlz) such thaty(t) 2m, for

all ©> . The proof is camp lete
3 Harvesting Policy and D scussion

The optinal management of renewable resources which has a direct relationshp to sustainable develop-
ment has been studied extencwely by many authors Econanic and bblogical aspects of renew able resources
management have been considered by Clark . Fum the point of views of ecological managers itmay be desira-
ble for he system to be gbble stability or pem ance of even globally attractive n order to p lan harvesting strate-
gies and keep a sustanab k developmentof the ecosystan Anothers aswell knovn predators have to search for
food (‘and therefore have to share or canpete for food), amore suitable general predator-prey theory should be
based on the so-called ratic-dependent theory, one of those theories is Holling'Tanner predator-prey model
which can be wughly stated as thatmore preys shoul be keeped on more predators H ence it is mportant for us
to study H ollngT anner predator-prey modelw ith b irth pulse and hawesting effect

In this paper firstly by usng the Floquet theorem and anall anpliude perurbaton skilly we have proved
he boundary perbdic soliton (x,(¢), 0) of the systam which has Ricker function or Bevertonl olt functbn is
always unstablewhen b> by (orp > po). Moreover by usng canparisonmethod we have ob tained the system is
pemanent when b> by (orp> po). Based on the above results we can devebpe the follow ng resulis

(1) ForBi(x )= be ", ifb> by = ¢ = 1 Then if OSE < E oy (themaxinum hawesting efbrt to keep the
system pemant), system (3) is pemanen}{ wherez=FE,, is the positive root of the follow ing equatbn

(bt 1)=d+ o+ csé " In—rl—

e -1
(2) ForBz(x)=—+L,,,, ifp>po = q(ed —1). Then if 0OSE < E,  ( the m axinum harvesting effort to
g+ x

keep the systen pemant), system (3) is pemmanent where z=FE,,., is the positive wot of the follow ng equaton

i
i{*& ﬂ d+z+cse’l”[7€—l—% )
e

Therefore i order to keep systan ( 3) pem anen} OSE <E,. is a harvesting threshold for the prey popu-
lation Fwm the point of view of ecologtalmanagers itmay be desirable to plan harvesting strategies and keep
sustainab le deve bpment of the ecosystem. In systen (3), fx d=0Q § ¢c=1 s=03A4=06 ForB,(x)=

- 1fixg=0 8 m =1 Sanemaxinum hawesting efforts £, . to keep the systan pemant are listed in
q+x



( ) 30 4 (2007 )

Table 1

[1]

[2]

[ 6]

Tabk 1 Themaxinum harvesting effortE . to keep systan pem ance
b orp E, b orp E,
80 3.594 449 155 600 3 598 594 935
be " 120 3. 995 790 546 2000 6 801402 335
300 4. 907 110 265 20000 9 103 537 551
80 3582379277 600 3 597017 268
pﬂ 120 3. 987 806 362 2000 6 800930012
+
7 300 4. 907 110 265 20000 9 103 490 357
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