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In this paper, we consider the nonlinear semidefinite programming ( nonlinear SDP) ;

;m;:f(X) s.t g(X)=0,X=0, (1)

where f:§"—R, g:5"—>R" are twice differentiable functions, S" denotes the subspace of all symmetric matrices
in R"", and X & 0 a symmetric positive semidefinite matrix. If f and g are all linear (affine) functions, the

nonlinear SDP problem (1) reduces to a normal linear SDP problem, which has been extensively studied during

the last decade!'?.

It is well known that the KKT conditions of (1) is

DAX) + 3 A.Dg,(X) - S

X S = = 0
6(X,A,S) 2(X) ) (2)

P, (X-S8) -X
where S’, is the cone of all n X n symmetric positive semidefinite matrices, Pg, ( + ) is the orthogonal projection
on §" and D f(X) (D*f(X)) is (twice) F-derivative of f at point X. We use (A,B): =Tr(A"B) (where Tr

denote the trace of a matrix) and || X||,([|],) to denote the inner product of A,B € R"*" and F-norm (2-norm)
respectively.

Tensor analysis and computation are a useful tool for optimization®’. The aims of this paper is to discuss the
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nonsmooth Newton’ s method for nonlinear semidefinite programming by 4-tensor analysis and to prove the con-
vergence result of this method by an equivalent condition. The equivalent condition used in this paper can be

viewed as a generalization of the results in paper [4].

1 Nonsmooth Newton’ s Method

In this section, we present a nonsmooth Newton’ s method for solving problem (2) by use of 4-tensor analy-
sis. The definitions of B-subdifferential ( C-subdifferential) and k-tensor can be found in [5] and [3] respec-
tively. Thanks to Malick and Sendov'®’, where they give the explicit formula of the B-subdifferential of P,
(+),i.e, forall Qes",

93P, (@) =0(n)? - (Diag"” £(Q)), (3)
where, for more details of O(n), O(n)?, Diag"”, ¢ -’ and Z(Q), please refer paper [6].

Let A: S"— R"®) be a function which maps a symmetric matrix to the vector of its eigenvalues with non-in-

creasing order, and we can define the following three index sets:

a: =1{i:1,(Q) >0},

B: = fi:)h(Q) =0} ’

Y:= {i:A,»(Q) <0}.
Moreover, suppose @, is the submatrix of matrix @ with the row index i € & and column index jeB, and lal,
iB81, Iyl denote the number of elements in the set a, B, y, respectively.

For the definitions of sets Zy,, (m) , Zo;(m), Dioy, (@) andZ;y,; (@), please refer paper (6], and
we know the following relation holds from paper [6]: for all Q@ € S",

Do (@) € Z(Q) CHoi1 (Q)- (4)
The nonsmooth Newton’ s method for (2) would produce each iteration step by solving the following equa-

tions ;
D*f(X*) (AX) + iAszg,(X")(AX) + zm;/_\)«,Dg,(X") -AS =-R;,
(Dg,(X'), AX) = - g,(X*), r = 1,2,,m, (3)
V*(AX, AS) =-R:,

where @*: =X* - §*, V* € 8,(Py, (@) -X*), R* =Df(X*) +§,l)thg,(X") -§*and R: =P, (@*) -X*. Tt

is easy to know V*(AX, AS) = T*(AX) -T*(AS) - AX, where T* € 9,Py, (Q").

Let I; € S" be a zero matrix with one at positions (i,j) and (j, i) forallj=1, -+, n, i=j, *»-, n and

1, ifi=j,
f:=!p
’ “/2—_11 ifikj,

Fi. =Df(x*)(I;),
G}'. =Dg,(X*)(I}).

It is well known that operator svec is defined as follows.

n!n&)
svec(X) : =(X“, ‘/2_X21a Tty \/Q_Xnn Xy, */Z—Xaz’ "')TER o ’

where X; denotes the ij-element in X. Let

2, =F;+ 3)'G* S,
0 = (svec(.{)’l‘l ), svec(.{)’z‘l ), s, svec(.{i,‘,,) s svec(ﬂ'z‘z) : svec(.(lg‘z) ,ot)

and

A" = (svec(Dg,(X*)), svec(Dg,(X*)), -+, suec(ng(X") )).
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So, the first and second equations in (5) can be reformulated as
Qsvec(AX) +A*AA ~svec(AS) = —svec(R") ,
(A*)"svec(AX) = -g, (6)
where g = (g,(X"), &,(X*), -, g.(X*))".

Before reformulating the last equation in (5), we need to prove the following Proposition 1. We first intro-

duce an operation in paper[6]: for all 4-tensor T on R" and all n x n matrix M, the operation result T( M)

should be defined as an n x n matrix with element t; = 2 T::;M“ . By J(A), we denote the index set { (i, j)

t,s=1

lA; =1} for all Ae &y, (1B81).
Proposition 1 (7*(X))"=T*(X) for all X S" and T* € 9,P, (Q*) with Z(18"1) =, (18"1).
Proof For simplicity, we omit the superscript k and let B e &, (I1B81). It is sufficient to prove that ( T*

(X)) ot = ( 7‘( X) ) 141, holds for all X e S" and Te 3sPsn, (Q) with this middle main sub-matrix B.

From above definition, we have

n,ty

1,t 1,¢ 1,t 2,¢ 2,
(T(X)),, =T0aX,, + T2uX,, +- + TonX,, + FoaX, + TouX, + o + Toak,

and the formula of (7(X) ), is similar. So, it is sufficient to show that each coefficient of different X ;(i=1,

t4ty
1.t 1,14 ),
are equivalent, i.e. , T'54 = Tu for all ¢, =t,, and T'ou +

wen, j=1,+.n) in (T(X)),, and (T(X))

toty taty

13,00 1,04 13,4 .82 4 .
Tuu =Tnu 4+ T for all t, #t;. We only to prove that Tou =T snfor all t, =t, since the proof of case t, #t,
is similarly.

After directly computing, together with the formula (3), (4), we can show the formula of 7‘1;3 as follows ;

lal lal lal lal +18l

iy .
Ttg.u = Z Z U‘l"IUQiz U’aizU'-til + ( 2 2 U‘lil U‘zizUlsiz Uw'l +

ii=1ip=1 i1 =lip=lal +1

lol +18l lal
. ; Ul,i, Uzziz U:;i; Um‘l ) + ) E Uz,i, U12i2 U13i2 Ut4i, +
iy =lal +lip=1 (i1,i3) e Q(B)
lal n /\
i
( U‘lil Ulziz Ulsiz U'u'l * U'liz Ulzil Ulsil Ul4i2 ) ? (7 )

i1 =lig=lal +1 +1 Ai. - M,
where Ue 0(n)?, A;, u, are positive and negative eigenvalue of Q respectively. We let i} =i,, i}, =i,, then,

since ¢, =t,, the first term of (7) becomes

lal lal lal lal

Z U‘li'z U‘zi'l U'a"l U‘4i'z = 2 z U‘li'l U‘ai'z U'a'"z U‘zi'l ’

heli=1 fi=1d=1
and the right hand side of the above equation is exactly the first term of rs Similarly, the second term of (7)

can be reformulated to the second term of T4 , and from the symmetry of B € &, (B) we know the third term
of (7) can be reformulated as the similar formula of the last term of (7). It follows that we only need to show the

symmetry of the last term.
Now, we show that each item in the sum of the last term of (7) is symmetric relating to ¢, and ¢,, i.e. ,

Ut,il sziz Uz3i2 Ul4il + Uz,iz U12i| U13i| Ul4i2 = U1|i2 Uz4i| U[3i| U12i2 + U:,i, Uz4£2 Ux3i2 Ux2i| = Ul|i| Uuiz Utgiz Ulzil + Uzliz Uz,,i, U£3i| Uzziz ’

it t.t4
so we have T'au = T on,

From the relations of &, (m) and Zy;(m), we know that the elements in the latter set can be reformu-

lated as linear combination of elements. in front set. So, Proposition 1 holds for all A Ig*1) = Doy (m),
which, together with (4), concludes that Proposition 1 holds for all 7* € 9P, (@*) too.

By Z* we denote the set { T}, e Y (@") with its middle main sub-matrix B € &)y, (18°1) |. Of course,
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Z*:={D Py, (@)} when Il =0. Let

T = (1, Jg(ﬁ:z £ 190, g( W4 My e, g( 1+ 155, ),

where j=1,:-,n, i =j,**,n and T,‘egk. So we can define

Z={TT = (T}, 210", -, 2T, 2%, 2T, )" with T, e *}.

From the above assumptions, we know that the third equation in (5) can be reformulated as

T"svec(AX) - T*svec(AS) - svec(AX) = —svec(R%) , (8)
where T* € #*. Together with equations (6) and (8), the equation (5) can be reformulated as
svec(AX) 2 A -I\(svec(AX)\ ( —svec(RY)
@ Ar = (AH"T 0 0 A= -g : (9)
svec(AS) T" -1 0 =T ) svec(AS) —svec(R})

where T* € #* and @ is a matrix, so equation (9) can be solved by several efficient methods for linear equa-
tions. Let Y: =(X, A, §), AY: = (AX, AA, AS), we are in a position to state our algorithm in the following.
Algorithm 1 Nonsmooth Newton’ s Method ’
(S.0) Choose Y’ € 8" xR™ xS", £=0 and set k: =0.
(8.1) I |@(Y*) lly<e, STOP. (where, [YI3: = X[ + A5 + [ISI}).
(S.2) Choose T* € £*, and find AY by solving equation (9).
(S.3) Set Y**' =Y* +AY, k«—k+1, goto (S.1).

2 Convergence Analysis

In this section, we are interested in the local convergence of nonsmooth Newton method for nonlinear semi-
definite programming. The superscript k£ defined in Section 1 is replaced by * in this section.
It is clear that the nonsingularity of the matrix
0 (A*)T
-T'A" T"(I-02") -1

is equivalent to the nonsingularity of the coefficient matrix of equation (9) for the same T*. T, and T," denote

(10)

the matrix T* € £ with the middle main sub-matrix Be.”'( 18" |) being 04.,. and 1 p+p+ » Tespectively, when
IB* 1+ 0.

Let 4" (+):=((Dg,(X"), ), ,(Dg,(X"),+))" and the operator (%" ) "' be the adjoint of
A", By I (X") and lin(7, (X)), we denote the tangent cone of S”, at X" and the linear space of Ton
(X*) respectively'”).

Before showing the convergence theorem, we introduce another formula of 9,0 (Y ), which comes from

KN-nondegeneracy in paper [ 8] for linear SDP, which indicates that each element in 9,@(Y*) can, in matrix-

vector notation, be written as
0’ A I
(A")" 0 0 . (11)
%P.Zj(P*)T 0 é_P*Z:(P.)T
Definition 1 | A solution Y™ of the optimality condition (2) is called KN-nondegenerate if, for all diagonal
matrices 2 _and 2 . the following implication holds for any triple (AX, AA, AS) €S" xR™ xS";
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DA(X")(AX) + 3 A7 Dg,(X*)(AX) + (£")' (AA) - AS =0,

A (AX) =0,
%P' 2_‘ (P*)"svec(AX) +—;—P' Z: (P*)"svec(AS) = 0.

{suec(AX) =0,
svec(AS) = 0.

Above definition of KN-nondegeneracy, which is suit for nonlinear SDP, is a generalization of the relative
definition for linear SDP in paper [8]. The following lemma hold obviously.

Lemma 1 Suppose that A, € R i of full column rank, i.e., rank(A;") =m. Then the primal
constraint nondegeneracy is equivalent to

AN (lin( 7 (X7))) " = {0},
where ./ denotes the null space of %" .

Now, under above lemma, we can deduce the main theorem in this section.

Theorem 1 Let Y* be a solution of the optimality conditions (2) satisfying that the matrix (10) is non-
singular for T* e {T, , T, }. If for all AX e S", svec(AX)" 2" svec(AX) =0 and svec(AX) " 2" svec(AX) =0
= V" svec(AX) =0, then Algorithm 1 is locally quadratically convergent.

Proof It is easy to see from the assumptions that

0 < svec(AX)" 02" svec(AX) = (AX, D’f(X")(AX) + Y A D’g,(X")(AX)) (12)
r=1
for all AX € S". The non-singularity of the matirx (10) corresponding to T* =T, yields the matrix A, e
R™7"*™ has full column rank , which together with Lemma 2. 6 in paper [4] and Lemma 1 gives

AN (lin(F (X7)))* ={0}. (13)
Let (AX, AA, AS) € S" xR x §" be any triple satisfying
Df(X")(AX) + iA,‘ng,(X‘)(AX) + (4") "' (AA) - AS =0,
A4 (AX) =0, - (14)
2P T T (P)Tsuec(AX) + 2P 3 " (P*)suec(AS) = 0.

Multiplying AX to both side of the first equation in (14), we have, from the second equation in (14) and
(12), that

(AX, AS) = (AX, D*f(X")(AX) + iA,‘D’g,(X')(AX)) + (%" (AX), AA) = 0.

Furthermore, since P* =U"* @ U" is non-singular, where U* € 0(n)?", and ®; is the Kronecker product,
the last equation in (14) is equivalent to
3 (P7) svec(AX) + Y | (P*)"svec(AS) =0,

which, together with the property of Kronecker product (P* )" svec(AX) =svec((U*)"AX U" ), yields Z j

svec(AX) + Z : svec(AS) =0 , where AX and AS are matrices (U")"AX U* and (U*)"AS U" respective-

ly. Componentwise, this may be written as

cr,-;ﬂ,.j+a;5§ij=0, Vi<sjsis<n, (15)

which, together with the definitions and properties of diagonal matrices z _and 2 , » yields
AZ; =0, V(i,j) € (" xa") U (a" xB") U(B" xa’), (16)
AX; =0, V(i,j) e (B xy ) U(y" xB") U (y" xy"). (17)

Furthermore, since o; , o] =0, o +o; >0 for all (i, j) eBXxpB, it follows from (15) that



( ) 31 2 (2008

)

A5, 8X; <0, Y (i,j) e B* xB". (18)
Let us partition the matrices AX and AS , then we obtain from (16),(17) that

AX,.. AX., &X....

a’y

AX = |fX,.,." AX,.,. 0 |
AX,.,." 0 0
0 0 A%,...

A=\ o f5,, A%,..

y*r*

Since (AX, AS) =0, we have (AX, AS) =0. Then it follows from the previous representations of AX and AY
that ‘

0 < (AX, A%) = Tr(AX,.,. AS,.,.) + Tr(AX,.,. AS,.;.) + Tr(AX.... AS,.,.).  (19)

Since

AX, =-ZiA5,, V(i,j) ea’ xy" (20)
T

and o ,0; >0 for all (i, j)) ea” xy", we obtain from Lemma 5.4 in paper [8], (18), and (20) that
Tr(AX,.,. A8..,.) <0, Tr(AX,.,. A5,.,.) <0 and Tr(AX..,. A5,.,.) <O.
So, we have (AX,AS) =0 and Tr(ﬁa.y.m.y.) =0 in view of (19). By (20) and Lemma 5.4 in paper

[8], we have ﬂu.y. =0 and A\Su.y. =0.
From (14) and (12), we have that

svec(AX) Q" svec(AX) = (AX,(D*f(X") + i,\,*nzg,(x*))(AX)> =

(AX, AS) - (4" (AX), AA) = 0.

It follows that 2" svec(AX) =0, which together with ﬂa.y. =0, (14), (17) and Lemma 2.7 in paper [4]
concludes AX =0.

Because of (14) and AX =0 we have AS €.#™. On the other hand from &i.,. =0 and (14), we get AS
e (lin(%, (X"))) *. Then by (13), we conclude AS =0.
At last, since AX =0 and AS =0, by using first equation of (14) and full column rank of A, , we obtain

AA =0, it follows that all elements in 3,0(Y" ) are non-singular, which together with the result in paper [5,
9], complete the proof.

Corollary 1 Let Y* be a solution of optimality conditions (2). If D;L(Y* ) (L( - ) is the Lagrange func-
tion of (1) is self-adjoint positive semidefinite on S", then the following are equivalent;

(1) The matrix (10) is non-singular for T* e { T, , T, |.

(2) KN-nondegeneracy holds at Y* and A, is of full column rank.

(3) All elements in 3,60 (Y" ) are non-singular.

(4) The matrix (10) is non-singular for all T* e £~

(5) All elements in 3,@(Y" ) are nonsingular.

(6) The constraint nondegeneracy condition and the strong second order sufficient condition hold at X~ .

Proof From proof of Theorem 1, we have (1) < (2) < (3) < (4) hold since the positive semidefinity

6
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of s equivalent to the selfad pint positive seam ide fin ity ofDXZL(Y* ). Furthemore the relations (1) (5
(6) cane fran [4].
Fran the conversional local quadratic convergence analysis of nonanooh Newton s method we have the
follow ng conclisbn hols
Corollary 2 Let Y bea sohtbn of opti ality conditons (2). D5 L (Y* ) is selfadjoint positive sem +
definite on S" and one conditbn n Corollary 1 holds then A koritm 1 is locally quadratically convergent

3 Conclusion

In this paper we discuss a non-snooth Newton smethod n [ 4] Hrnonlnear sen idefnite progranm ng by

use of 4&-tensor analysis The convergence result of A korithm 1 is also estab lished
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