Star Extrem ality of a Class of Incidence G raphs

XuKexiang ${ }^{1,2}$ ，Y an Juan ${ }^{1,3}$
（1．School of Mathem atics and Computer Scien ce，Nan jing Nom al Un iversity，Nan jing 210097，China）
（2．College of Science，Nan jing U nivers ity of A eronautics and A stronautics，N an jing 210016，China） （ 3 College of M athem atics and System Sciences X in jang University，U moqi830046 China）

Abstract

Incidence graph $I\left(C_{n}\right)$ of C_{n} had been proved to be a circulant graph It was shown that these incidence graphs $I\left(C_{n}\right)$ of all C_{n} and some graphs related to $I\left(C_{n}\right)$ were star extrem al The circular chrom atic num ber and the fractional chrom atic number of these g raphs were obtained w ith im orph ic

Key words incidence graph circulan tgraph star extremal
CLC num ber 0157． 5 Docum ent code A Article ID 1001－4616（ 2008）02－0023－04

一类关联图的 Star Extrem al性质

许克祥 ${ }^{12}$ ，橄 姍 ${ }^{13}$
（1．南京师范大学数学与计算机科学学院，江苏 南京 210097）
（2南京航空航天大学理学院，江苏 南京 210016）
（3新疆大学数学与系统科学学院，乌鲁木齐 830046）

Abstract

［摘要］证明了 C_{n} 的关联图 $I\left(C_{n}\right)$ 是循环图，还证明了所有 C_{n} 的关联图 $I\left(C_{n}\right)$ 及一些与 $I\left(C_{n}\right)$ 有关的图是 star extrem al的．并用一种同构的方法得到了它们的圆色数和分色数．

［关键词］关联图，循环图，star extremal

W e consider only finite undirected and smple graph in this paper unless stated othew ise Let G be a graph and let $V(G), E(G), \alpha(G)$ and $\omega(G)$ be the vertex set edge set independence number and clique number of G ，respectively The definition of inc idence graph $I(G)$ of G given in［1］is as follows

$$
V(I(G))=\{(v, e) \in V(G) \times E(G): v \text { is incident w ith } e\}
$$

and two vertices (u, e) and (v, f) are ad jacent if one of the follow ing holds（1）$u=u$ ；（2）$e=f ;(3) u v=e$ orf．
A proper coloring $f: V(G) \rightarrow\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ of G is an ass gnment of colors to the vertices of G such that $f(u) \neq f(v)$ for all ad jacent vertices u and v ．The chromatic number $X(G)$ of G is them \mathbf{n} imum number of \cot ors necessary to cobr G properly，i e there exists a proper cobring of G ．

So far several sign if icant variations of chromatic number have been introduced One of them is circu lar chro－ m atic number of a graph which was introduced first by V ince ${ }^{[2]}$ under the nam e as the＂star chrom at ic number＂ of a graph Suppose p and q are positive integers such that $p \geqslant 2 q$ ．A $(p, q)-$ cobring of agraph $G=(V, E)$ is a mapp ing c from V to $\{0,2 \ldots, p-1\}$ such that $\|c(x)-c(y)\|_{p} \geqslant q$ for any edge $x y \in E$ ，where $\|a\|_{p}=$ m in $\{a, p-a\}$ ．The circu lar chrom atic number $X_{c}(G)$ of G is the infmum of the ratios p / q forwhich there ex ist (p, q)－coloring of G ．The fractional chromatic number of a graph is another variation of the chromatic number A s a refinem ent of chromatic number itwas shown in［2］$X(G)=「 X(G) \boldsymbol{\Delta}$ for any graph G ．A fractional colo－

[^0]ring of a graph G is a mapp ing c from $S(G)$ ，the set of all independent sets of G ，to the interval［ 01 1］such that $\sum_{x \in S, S \in S_{(G)}} c(S) \geqslant 1$ for all vertices x in G ．The fractional chromatic number $x^{\prime}(G)$ of G is the in fimum of the value $\sum_{S \in S_{(G)}} c(S)$ over all fractional co brings of G ．M oreover ${ }^{[3]}$ ，for all graphs，
$$
\max \left\{\omega(G), \frac{|V(G)|}{a(G)}\right\} \leqslant x_{f}(G) \leqslant x_{t}(G) \leqslant x_{(}(G)
$$

Circulant graph is formulted as follow $\mathrm{s} G=G(p, S)$ with $V(G)=\left\{\begin{array}{llll}0 & 1 & 2 & \ldots, p-1\end{array}\right\}, E(G)=\{u v \| u$ $\left.-v \|_{p} \in S\right\}$ ，where $p \in \mathbf{Z}^{+}$and $S \subseteq\left\{\begin{array}{lll}1 & 2 & \ldots \nabla p / 2\lrcorner\end{array}\right\},\|x\|_{p}=\mathrm{m} \mathbf{n}\{|x|, p-|x|\}$ ．The so－called distance graph denoted by $G(Z, D)$ is a graph which is c bsely related to circu lant graph，with the $\operatorname{set} \mathbf{Z}$ of in tegers as vertex set andwith an edge p ining two vertices u and v if and on y if $|u-v| \in D$ ．

A ccord ing to inequality $\left({ }^{*}\right)$ ，we have $\chi_{f}(G) \leqslant x(G)$ for any graph G ．The graph is called star extremal when $X_{f}(G)=x_{t}(G)$ ．The star extremal graph has many interesting properties ${ }^{[3]}$ ．Same star extrem al distance graphs and circulant graphs can be found in［3］and［4］，respectively．

In［5］，the au thor obtained the circular chrom atic num ber of $I\left(C_{n}\right)$ of cycle C_{n} for $n=3 m$ and $n=3 n+2$ ， and gave a bound for $n=3 m+1(m \geqslant 1)$ ，by discussing the structure of these graphs．

In this paper we show that the incidence graph $I\left(C_{n}\right)$ of cyc le C_{n} is isom orphic to circulant graph $G(2 n, S)$ w in $S=\{12\}$ ．A fter the proof of star extrem a lity of these circulant graphs we detem ine the circular chıom atic number and the fractional chromatic number of these graphsw ith adifferentmethod from that used in［5］，wh ich can be viewed as a complement of the result in［5］．In the last，we obtain the star extremality of some graphs re lated to incidence graph $I\left(C_{n}\right)$ ．

1 M a in Results

In［5］，by discussing the stucture of incidence graph $I\left(C_{n}\right)$ ，the au hor obtained the follow ing theorem sas an incomplete detem ination of its circular chım atic number

Theorm 1 If $n=3 m$ w ith any positive integerm，then $\mathrm{X}_{c}\left(I\left(C_{n}\right)\right)=3$
Theorem 2 If $n=3 m+2 \mathrm{w}$ ith any positive integerm，then $\mathrm{X}_{t}\left(I\left(C_{n}\right)\right)=3+\frac{1}{2 m+1}$ ．
Theorem 3 If $n=3 m+1$ with any positive in tegerm，then $\mathrm{x}_{c}\left(I\left(C_{n}\right)\right)=4$ for $n=43+\frac{1}{8 m+1} \leqslant \mathrm{x}_{c}(I$ $\left.\left(C_{n}\right)\right) \leqslant 4$ for $n=6 n+1 ;$ and $3+\frac{1}{8 n+5} \leqslant x_{c}\left(I\left(C_{n}\right)\right) \leqslant 3+\frac{1}{2 m+1}$ for $n=6 n+4$

Note that in Theorem 3，case for $n=3 n+1$ is subdivided into three subcases $n=4 n=6 n+1$ ，and $n=6 n+4$ However to our disappointment the circular chromatic number of incidence graph $I\left(C_{n}\right)$ was not campletely detem ined except for a bound when $n=3 n+1$ ．

It is well known and easy to prove that if a graph G is vertex transitive，then $x^{\prime}(G)=\frac{|V(G)|}{\alpha(G)}$ ．Therefore for any circu lant graph $G(n, S)$ ，we have $x_{f}(G)=\frac{n}{\alpha(G)}$ because that all circu lant graphs are vertex transitive Thus to prove that a circulant graph $G(n, S)$ is star extremal it is sufficient to prove that $x_{\ell}(G)=\frac{|V(G)|}{\alpha(G)}$ ． From now on the circular dramatic number $x_{f}(G(n, S))$ and the fractional chromatic number $X_{f}(G(n, S))$ of c irculant graph $G(n, S)$ w ill be written as $x_{f}(G)$ and $X_{(}(G)$ for short respective ly．

To obtan theman theorem，the follow ing several lemmas are important and useful as the prelim inaries
Lemma $1^{[3]}$ Suppose $G=G(p S)$ is a circu lant graph and $|S|=2$
（1）If $S=\{1, k\}, k$ is odd and $p>(k(k-3)+2) r / 2$ where r is the un ique number $0 \leqslant r<k$ satisfy ing $r \equiv p(\bmod k)$ ，then G is star extrem al
(2) If $S=\{1, k\}, k$ is even, and $p>k(k-1)$, then G is star extremal

Lemma 2 If $C_{n}=v_{1} v_{2} \ldots v_{n}$ denotes a cycle on n vertices, the edge set of C_{n} is written as $\left\{v_{n} v_{1}\right\} \cup\left\{e_{i}=\right.$ $\left.v_{i} v_{i+1}: i=1,2 \ldots, n-1\right\}, I\left(C_{n}\right)$ is the inc idence graph of $C_{n}, G(2 n, S)$ is a circulantgraph with $S=\{1,2\}$, then $I\left(C_{n}\right)$ is isomoph ic to $G(2 n, S)$.

Proof We define a mapping from $V\left(I\left(C_{n}\right)\right)$ to $\{1,2, \ldots, 2 n-1,2 n\}$ such that

$$
f\left(v_{i} e_{j}\right)= \begin{cases}2 j-1, & \text { if } i=j \\ 2, & \text { if } i=j+1\end{cases}
$$

where $i j \in\{1,2 \ldots, n-1, n\}$. According to the definition of incidence g raph and the incident relation of vert $\dot{+}$ ces and edges in C_{n}, we can easily obtain that $\left(v_{i} e_{j}\right)\left(v_{p} e_{q}\right) \in E\left(I\left(C_{n}\right)\right)$ if and only if $\left\|f\left(v_{i} e_{j}\right)-f\left(v_{p} e_{q}\right)\right\|_{2 n}$ $=1$ or 2 which is equivalent to $\left\|f\left(v_{i} e_{j}\right)-f\left(v_{p} e_{q}\right)\right\|{ }_{2 n} \in S$. Considering the definition of c irculant g raph the lemma folbws

By Lemm a 2, to detem ne the circu lar chromatic number and the fractional chromatic number of incidence graph $I\left(C_{n}\right)$, it suff ices to obtain the above tw o chrom atic num bers of circulan tgraph $G(2 n, S)$ w ith $S=\{1,2\}$.

Lemma 3 If $S=\{1,2\}$, and $n>1, m \geqslant 1$ are integers $G(2 n, S)$ is a circulant graph it follows that $G(2 n, S)$ is star extrem al Furthem ore,

$$
X_{c}(G)=X_{f}(G)= \begin{cases}3, & \text { if } n=3 m \\ 3+\frac{1}{m}, & \text { if } n=3 m+1 \\ 3+\frac{1}{2 m+1} & \text { if } n=3 m+2\end{cases}
$$

Proof For the special case of Lemma 1, we can imm ediately get the follow ing conclusion circu lant graph $G(2 n, S)$ w ith $S=\{1,2\}$ and $n>1$ is star extremal M oreover combining the fact that circulant graph $G(2 n$, S) with $S=\{1,2\}$ and $n>1$ is star extrem al and all circu lant graphs are vertex transitive, our focus can be d $\dot{+}$ verted to gain the independence number $\alpha(G)$ of circu lant graph $G(2 n, S)$.

In the nextstep wew ill show that $\alpha(G)=2 m$ when $n=3 m+1$, the proof for $\alpha(G)=2 m+1$ when $n=3 m$ +2 and $\alpha(G)=2 m$ when $n=3 m$ is sm ilar but easier and so be om itted $\operatorname{Set} S_{0}=\{1,4, \ldots, 3(2 m-1)+1\}$, it can be easily verified that S_{0} is an independence set of circulant graph $G(2 n, S)$, therefore $\alpha(G) \geqslant 2 m$. Assume that $\alpha(G)>2 m$, suppose $S^{\prime}=\left\{i_{1}, i_{2}, \ldots, i_{2 n+1}\right\}$ be a subset of size $2 m+1$ with $i_{1} \leqslant i_{2} \leqslant \ldots \leqslant i_{2 m+1}$ such that S^{\prime} i an independence set of circulant graph $G(2 n, S)$, then $i_{1} \leqslant 1, i_{2} \leqslant i_{1}+3, i_{3} \leqslant i_{2}+3 \leqslant i_{1}+2 \times 3, \cdots$, $i_{2 m+1} \geqslant i_{2 n}+3 \geqslant \ldots \geqslant i_{1}+2 m \times 3 \geqslant 6 m+1$. By the p geonhole principle, there ex ist $i_{p}, i_{q} \in S^{\prime}$ such that $\left|i_{p}-i_{q}\right|$ <3 or $6 m+2-\left|i_{p}-i_{q}\right|<3$ Th is mplies that vertex i_{p} and vertex i_{q} are ad jacent by the defin it ion of circu lant graph Therefore S^{\prime} is not independent this is a contradiction. Thus $\alpha(G) \leqslant 2 m$. And th is lemma holds mmediate l .

Combining Lemm a 2 and Lemma 3 , the folbwing theorem is obvious
Theorm 4 If $C_{n}=v_{1} v_{2} \ldots v_{n}$ denotes a cycle on n vertices, then incidence graph $I\left(C_{n}\right)$ is star extrem al and

$$
X_{c}\left(I\left(C_{n}\right)\right)=X_{x}\left(I\left(C_{n}\right)\right)= \begin{cases}3 & \text { if } n=3 m \\ 3+\frac{1}{m}, & \text { if } n=3 m+1 \\ 3+\frac{1}{2 m+1} & \text { if } n=3 m+2\end{cases}
$$

M oreover,

$$
X\left(I\left(C_{n}\right)\right)= \begin{cases}3 & \text { if } n=3 m \\ 4 & \text { otherw ise }\end{cases}
$$

2 Star Extrem ality of Same G raphs R elated to $I\left(C_{n}\right)$

In the next we w ill discuss the star extremality of the complement of $I\left(C_{n}\right)$ and the square of $I\left(C_{n}\right)$. To
detem ine whether these graphs be star extremal we first recall these relevant defin itions and lemmas
The complement of graph G denoted by G в a graph with a sam evertex set as G in wh ich v_{i} and v_{j} are adjat cent if and only if v_{i} and v_{j} are not adjacent in G ．The folbw ing lemma g ives a class of circu lant graphs wh ich are star extremal

Lemma $4^{[3]}$ Suppose that $k^{\prime}=k+l \leqslant \frac{p}{2}, S=\left\{k, k+1 \ldots, k^{\prime}\right\}$ and $G=G(p, S)$ is circulant graph If p $-2 k^{\prime}<\mathrm{m} \dot{\mathbf{n}}\left\{k_{3} l\right\}$ ，then G is star extremal

Theorem 5 The complement of inc idence graph $I\left(C_{n}\right)$ is star extremal Moreover， $\mathrm{x}_{\mathrm{c}}\left(\overline{I\left(C_{n}\right)}\right)=$ $x_{f}\left(\overline{I\left(C_{n}\right)}\right)=\frac{2 n}{3}$ ．

Proof In view of Lemm a 2 and the definition of camplement of a graph the graph $\overline{I\left(C_{n}\right)}$ is isomo ph ic to c irculant graph $G(2 n, S)$ with $S=\{34, \ldots, n\}$ ．W ith app lication of Lemm a 4 w ith $k=3, k^{\prime}=n$ and $p=2 n$ ，it is easily obtained that $G(2 n, S)$ is star extremal It can be calculated that $\alpha(G(2 n, S))=3$ without d ifficu ly， thus $X^{\prime}(G(2 n, S))=\frac{2 n}{3}$ because of the vertex－transitinity of circulant graph A cconding to the defin ition of star extrem al graph this theorem holds certan ly

The square of a graph G ，written by G^{2} ，has the same vertex set as G and has an edge between wo vertices if the distance betw een them in G is at most 2 The square of the incidence graph $I\left(C_{n}\right)$ will be denoted by $I^{2}\left(C_{n}\right)$ for short Next we will concentrate on the star extremality of $I^{2}\left(C_{n}\right)$ ．

Lemma $5^{[3]}$ If $S=\{12 \ldots, k-1\}$ ，then the circulant graph $G(n, S)$ is star extremal
Theorem 6 The square graph $I^{2}\left(C_{n}\right)$ is star extremal and

$$
\mathrm{x}_{\ell}\left(I^{2}\left(C_{n}\right)\right)=\mathrm{X}_{f}\left(I^{2}\left(C_{n}\right)\right)=\frac{2 n}{\left.\nabla \frac{n}{2}\right\lrcorner}= \begin{cases}4, & \text { if } n=2 n, \\ 4+\frac{2}{m}, & \text { if } n=2 n+1\end{cases}
$$

Proof By the definition of the square of graph and Lemma 2 the graph $I^{2}\left(C_{n}\right)$ is isomorph ic to circulant graph $G(2 n, S)$ with $S=\left\{\begin{array}{lll}1 & 2 & 3\end{array}\right\}$ ．W ith a sim ilarmethod to that in proof of Lemma 3 ，we can obtain that $\alpha(G$ $\left.\left.(2 n, S))=\nabla^{2 n}\right\lrcorner=\boldsymbol{\nabla} \frac{n}{2}\right\lrcorner$ ．Combing Lemma 5 and the fact that $G(2 n, S)$ is vertex transitive，we obtain th is theorem immediately by considering the two subcases $n=2 n$ and $n=2 n+1$ ．

From th is theorem，the chromatic numbers of these graphs $I^{2}\left(C_{n}\right)$ can be easily detem ined

［References］

［ 1］B rualdi R ichard A，Jenn ifer J et al Incidence and strong edge coloring of graphs［J］．D iscreteM athem atics 1993， 122 （ 1 ／ 3）：51－58
［2］V ince A．Star chrom atic number［ J］．J G raph Theory，1988，12（4）：551－559
［3］Gao G，Zhu X uding Star extrem al graphs and the Lexicograph ic product［ J］．D isc rete M ath，1996，152（ 1／3）：147－156．
［4］Xu Kexiang Song Zengm in Som e results about the coloring of distance graphs［J］．JoumalofNanjing Univers ity M athem at \dot{f} cal B iquarterly，2004，21（1）：100－113．
［5］Liu X insheng Deng K ai C ircular chrom atic num ber of $I\left(C_{n}\right)$［J］．Journal of Lanzhou U niversity，2006，42（5）：109－112

[^0]: Received date 2007－09－28．
 Foundation item：Supported by the NUAA Young Science Foundation（Y0428－081）．
 Corresponding author XuKexiang lecturer，doctoral majored in graph theory．E－mail xukx1005＠nuaa edu．cn

