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On Contractive Conditions and Fixed Points
in Fuzzy M etric Space

Xue Qiongyy Fang Jinxuan

(School of M athem atics and Can puter Science Nanjing NomalUniersity Nanjing 210097 China)

Abstract Itwas ponted out that wo canmon fixed pont theorans n fizzy metric space recently given by PantV con-
tained som em stakes Bymodifying the contractive condition some nev common fxed point theorems in fuzzy metric
space were establshed which mpmwoved and generalzed the resulis of Pant
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1 Basic Defmnition

The heory of fizzy sets was introduced by Zadeh n 1965 . Since then many authors have ntoduced the
concept of fuzzy metric space in different ways In this paper we deal with he fuzzy m etric space defined by
K ranosil and M thakk? andmod ified by Geoge and V eeranani .

Definition 1 The3- wple (X, M, * ) & said to be a fuzzym etric space ( for short FM - space) ifX is
an arbitrary sef * is a contnuous t-nom andM is a fuzzy set onX’ x [0 o) satisfyng the Hllow ng cond
tons

(M- 1) M (x5 0)=Q

(MM -2)M (x, 9, t)=1 for all t> O if and only ifx=y,

(M =3)M (x5 t)=M(y x 1),

(M=) M (x 3 0* M (x5 5) M (x5 1+ 5),

(M- S)M (x5 * ):(Q o) [Q 1] is contiuous
for allx, v, z€X and ¢ s> 0.

Ranark 1 (FM- 2) and (FM - 4) mply hatM (x, 7, * ) is nondecreasng for allx, y mX.

Definition 2 Letd and B be maps fran a M -space (X, M, * ) mlo itself
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(1) A andB are sail to be canpatble (or asymplotically canmuting), if for alls> Q  linM (ABx,, BAx,,
t)=1 whenever {x,} & asequence nX such hat ImAx, = ImBx,= z for sm ez€X'M.

(2) A andB are sai to be pontw ise R-weakly canmuting if there existsR > 0 such thatM (ABx BAx t)
>M (Ax, Bx, t/R ) for each x€X and 1> 0.

Reanark 2 It is clear fran the above definitbon hatA and B will be noncam patible if there exists at least
one sequence {x,] nX such thatn],igAx,l = "Jing,, =z forsanezEX but eihernlich (ABx,, BAx,, t)Z 1 or the

lin it does not exist for same > Q

Recently PantV'" gave the follow ng two canmon fixed point theoran s n FM -space under con tractive con-
ditbns using the notion of noncanpatible maps

Theoren A'” Letf and g be noncanpatble pontw ise R -weakly commutng selfn aps of a FM -space (X,
M, * ) such that

(D fX)Cg(X )

(i) M (x x ) >max(M (gv gy th). M (fx. gx h), M (fy. gy th). M (fy, gn th). M (fx gy. b)), OS
h<'1 >0

If the range of f org is a canplete subspace ofX, thenf and g have a unque canmon fixed pont

Theoran B'® Let (A, S) and (B, T ) be pointv ise R-weakly canmuting selfnaps of a FM -space (X, M,
* ) satisfying the cond itions

() AKX )CcT(X), B(X)CS(X);

(2) M (Ax, By, t) >max{M (Sx, Ty, th), M (Ax, Sx, h ),M (By Ty, th), M (Ax, Ty, th), M (By, Sx, th) },
0<h<l >0

Let (A, S) or (B, T) be a noncanpatible pair of mapp ings If the range of one of them app ngs is a cam-
plete subspace of X, thenA, B, S andT have a unique canmon fxed pont

It is easy to see that the conditbns of these wo heoran s can never be satisfied In fact ifx is a conmon
fixed point off and g (ord, B, S andT), we putx=y= X in (1)), whrh nduces a contradictbn. The wo

heorem s contan same evident errors such as “max” and “#h” n (i) should to be “min” and “ i/h”, respec

tvel,. “M (x, 9, t)” n (i) of Theorem A should to be “M (fx, f% ¢)”. M oreover In the proofs of the theo
rems also there are some m istakes
In this paper bym eans ofmodify ng the contractive cond itions of Theoran A and Theorem B, we estab lish

sane new canmon fixed point theorems in FM -spacg which inprove and generalize Theorem A and Theorem B.

2 Mamn Results

In the folbwing we alvays assume that (X, M, * ) is an IM - spacew ih the follow ng property

(M - 6) l_hg.}M(x, y, t)=1 for allx, y nX.
A ctuall, n the pwof ofTheoream A and Theorem B, the author also used the cond ition ( FM - 6).

Definition 3 LetA and B be maps fran a M — space (X, M, * ) mnto itself A andB (or (A, B)) are
said to be asymptotically concident if there exists a sequence {x,} nX such that”ligAx,, = nlingn =z for same
z nX.

Reanark 3 It is easy to see that ifA and B are noncanpatiblg then they are asympiotically concident for
certan

Definition4 Letf and g be wo functions fran R" nto [Q 1]. W e definef> g iff(t) 2g(t) for alli>
(Q and there exists at leastone & > O such thatf (&% )> g ().

Theoren 1 Let(A, S) and (B, T ) be pontw ise R-weak ly canmuting selfn aps of a FIM -space (X, M, * )
satisfying the conditions

(D AX)CT(X), B(X)CS(X);
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(2) M (Ax, By, t)>mn{M (Sx, Ty, t), M (By, Sx, t), M (By, Ty, t),M (Ax, Sx, t/h), M (Ax, Ty, t/h )},
O<h< 1 > Q wihAxZBy;
(3) (B, T) isasymptotically concident
(4 B(X) orS(X) isa closed subspace ofX.
ThenA, B, S andT have a unfue canmon fxed pont
Proof SnceB andT are asympiotically comcilent there exists a sequence {x, /] nX such thatBx, D,
Tx, p asn_ o, for smep nX. Alsg becauseB(X)C S(X ), for eachx,, there existsy, nX such that
Bx, = Sy,. ThusSy,,_> p-
I . Suppose thatS(X ) is a closed subspace ofX, then there exists a pontu nX such thatp= Su. Usng
condition(2), we get
M (Ay, Bx,, t) Zm m{M (Su Tx,, t), M (Bx,, Su t),M (Bx,, Tx,, t), M (Aw Su, t/h ), M (Aw Tx,, t/
h)j.
Letting n_ oo we haveM (Ay, Su, t) >M (Au, Su, t/h) 2. 2M (Au, Su, t/h")_) 1asn oo, s0Au= Su
SnceA andS are pontw ise R — weak canmutatng there exists R> 0 such hatM (ASy, Mu, t) >M (Au,
Su t/R)=1 for allt> Q that isASu=SMAu, and soAdu=ASu= SAu= SSu
SnceA(X )CT(X), there exisis a pontw nX such hatAu=Tw. We assert thatTw = Bw. If not by
condition ( 2), there exists fp> 0 such that
M (Ay Bw, t)>mn{M (Su Tw, &), M (Bw, Su, &), M (Bw, Tw, &), M (Au, Su, to /h),M (Au, Tw, tv/h)}=
miun{l M (Bw, Sy, &), M (Bw, Tw, &), 1 1} =M (Aw Bw, &)
a contradctbn HenceAu= Bw = Tw = Su. PonwiseR — weak canmutativity of B and T mp lies that BTw =
TBw and BBw = BTw = TBw = TTw. Sq we can prove thatAu =AAu. In fact fAuZAAu, then ushg (2),
here exists 4 > 0 such that
M (Au AAy, 4 ) =M (AAw, Bw, t ) >
mn{M (SAw, Tw, &, ), M (Bw, SAw & ), M (Bw, Tw, & ),M (AAw SAw & /h),M (AAw Tw, t b))} =
M (Au, AAu, 1)
a contrad cton Thus Au=AAu= SAu andAu is a canmon fixed pontofAd andS. S ihrly we can prove that
Bw=BBw =TBw, 1 e, Bw isa canmon fxed pont of B andT. SinceAu=Bw, Au is a canmon fxed pont of
A B, S andT.
II. Suppose thatB (X ) is a cbsed subspace ofX. SinceB(X)CS(X) andBx, p, there exBis a pontu
nX such thatp= Su, and so the proof & sinilar to the prevbus case hatS (X ) is closed
It is easy to prove that the canmon fixed pointofd, B, S andT is unique In fact if there exists a pont &
nX with &= A%= B&= S¢=T < but ¢ZAu, then by condition (2), there exists & > 0 such that
M(SGAy & )=M(ASAAu & )>
minfM (SGTAy, ¢ ), M (AAy, SG & ) M(AAwTAw ¢ ), M(AS S & M),M (A5TAw ¢ /h) )=
M(GAu ¢ )
a contrad ctbn ThereforeA, B, S and T have a unigue canmon fixed pont
Exchangng the statons ofA, B, S and7, x and y mTheoran 1, respectively we obtain the follw ing the-
orenr
Theoran 2 Let(A, S) and (B, T ) be pontv ise R-weak ly canmuting selfn aps of a FM -space (X, M, * )
satisfy ing the conditions
(H)AX)CT(X), BX)CSX);
(2) "M (Ax, By, t)>m nfM (Sx, Ty, t), M (Ax, Sx t), M (Ax, Ty, t) M (By Sx t/h), M (By, Ty t/h)),
O<h< 1l > Q wihAxZBy;
(3)" (A, S) i asym piotically coinc dent
(4)"A(X) orT (X ) is a closed subspace ofX.
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Then A, B, S and T have a unique canmon fixed pont
Renark 4 Theoran 1 and Theoran 2 are both correctbn and generalization ofTheorem B.
SettingA=B=f and S=T=g 1 Theoran 2 we get the follow ng result
Theorean 3 Letf and g be asympiotically coincdent and pontw ise R -weakly canmuting selinaps of a
fuzzy metric space (X, M, * ) such hat
() FOY)Cg(X )
(i) M (fi fu 0)>minfM (gx gy t). M (fi gx 1), M (f gx 1) M(fi gx th), M(fs gy th)), 0S
h<1 > Q xZy.
If the range of f org is a closed subspace ofX, thenf and g have a unique canmon fixed pont

Reanark 5 Theoran 3 is an mproven ent and generalization ofTheorem A.
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