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Abstract: This paper presents a nonmonotone gradient-path algorithm by approximating the secant equation for uncon—
strained optimization problem. The nonmonotone criterion is used to speed up the convergence progress of objective func—
tion. Theoretical analysis is given which proves that the proposed algorithm is weakly globally convergent. The results of
numerical experiments are reported to show the effectiveness of the proposed algorithm.

Key words: unconstrained optimization gradient-path nonmonotone technique global convergence

CLC number: 0242.2 Document code: A  Article ID: 1001-4616(2011) 03-6001-06

(1. 211101)
(2. 210046)
(3. 211171)

In this paper we consider a new gradient-path method for large scale unconstrained minimization problem

minf{ x)

xeR"

where f is a real-valued function on R". For any given x, this method uses the quadratic model

Vo) =f, +ggw+%wTBkw (1)

where we assume throughout that both the gradient g(x) = V f{x) and the matrix B(x) = V _f{x) of f exist.
Via a solution of the differential equation

A0 = - Tg(r0)  H0) =0
we can get a gradient-path of the quadratic model y(x) in 1 . However calculation of B, and its inverse Hes—
slan matrix is usually time-consuming and impractical. So we can modify the gradient-path by approximating the

secant equation.
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The paper is organized as follows. In Section 1 we define the new gradient path by approximating the se—
cant equation and its property. In Section 2 we describe the nonmonotone gradient-path algorithm. In Section 3
the weak global convergence is established. Finally the results of numerical experiments of the new proposed

gradient-path algorithm is reported in Section 4.

1 A New Modified Gradient Path

The solution of the differential equation

i) =-Vyly,) ¢(0) =0 (2)
is named as the gradient-path of the quadratic function (@) . It can be given in the following closed form '
x( 1) =xk+(eilBk_[)Bk71gk- (3)

In 2 an explicit calculation of stepsize a, is presented where o, is obtained by minimizing || aAx - Ag ||
with Ax =x, —x,_, and Ag =g, —g,_, and q, is given as
o, = Ax Ag)/ Ax Ax) (4)
where @ b) denotes the scalar product of vectors a and b.
In (3) if we use a,/ to approximate B, we yield the gradient-path

1
(1) =(e "™ 1) —g,.
a

oyl

For the composite function e~ we have

A = (e =n g = (3 D) < (3 I g < (e )

@y, p=0 pl «; p=0 p'

Therefore we can use 9(#) in (5) as a new gradient-path.

We summarize the property of the modified gradient-path as follows.

Lemma 1 Let the step y,(¢) be obtained from the new gradientpath we assume that o, >0. Then we
have that the norm function of the path is monotonically increasing for t € 0 + o) and that the function

¢, ( @) is monotonically discreasing for t € (0 + o) . Furthermore

dy,( 1)
gZ#—H g, > as 0. (6)

Proof From the definition of new path (5) we have

_ 1
= ek 1) — .
7 1= e =1 Lg

Then using o, >0 and e " <1 we have
|
() I =(1—e™™)——|lg|l.
Qy
Let
|
ei(8) = [ w(0) | =(1-e™) ] gl
Qy,

we have

—lay

- 1 -l
ety =-(-a)e ™ llg |l =e™|gl >0
Qy,

which means that || 9,(¢) || is monotonically increasing forte 0 + o). From
. 1 .
U (1) =f, +&, v 1) +?’/k( 1) '‘Byy.(1)

with B, =a,/ we know that

dlﬂ( t) dy( t) (17( t) —tay T —ta, —ta T -2ty T
T8 gty = e g e e 1) gl g = —e g g, <0.
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which means that ¢,( #) is monotonically descreasing for t e (0 + o0).

Further from

dy, (1)
g, = e’
we have
dy, (1)
gi— g - e’ as 0. (7)

2 The New Gradient Path Algorithm

The nonmonotone technique is an efficient one for optimization ( see 3-0 ). In this section we describe
an algorithm with new gradient-path (5) and the nonmonotone technique.

Algorithm 1

Step 0 [Initialization Step.

Given x;, and . Choose parameters 1 e (0 %) we(01) 6>0 0<o<l &>0 and positive integer

M. Set m(0) =0 and k£ =0.
Step 1 Test for convergence.

Compute g,. If || g, || <& stop.
Step2 If a, <o or akBL set a, =0.
o

Step 3  Choice of x, .

Choose 1, = @ " @ """ -+ and compute y(1,) =(e " -1) Lgk until the following inequality is
Q
satisfied
fx, +v) $f(xl(k)) +77(1_ei’k) <y(0) g, > (8)

where f{ Xy k)) = MAX ) <icmy gy A xk—j) }.
Step 4 Compute q, ;-
Set o, = _(g'/f.)’k) /( akgv/f g,) wherey, =g, —g,.
Setk: =k+1 m,,, =min{m( k) +1 M} go to Step 1.
Remark

1. The objective of Step 2 is to keep { @} uniformly bounded. In fact for all &
0 <min{$ &} <a, < max{lz 5}.

2. The algorithm cannot cycle infinitely between Step 3 and Step 4. Indeed since 0 <p <1 1 -e7"%>0
and (7(0) g, <0 the acceptance rule (8) in Step 3 is satisfied for sufficiently small value of .

3. The choice of a,, in Step 4 comes from 11
3 Convergence Analysis

Throughout this section we assume that f: R"—R' is bounded. Given x, € R" the algorithm generates a
sequence { x,} CR". In our analysis we denote the level set of f by
L(x,) ={xeR"l filx) <fA{x,)}.
Lemma 2 Let {x,} € R" be a sequence generated by the algorithm. If there exists £ >0 such that
gl =¢ (9)

for all & large enough then we have that khmf( x,) exists 1. e.

limf( x,) =f (10)

k— o0
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and
lim {Jx,y =%, | =0. (11)
Proof According to the acceptance rule in Step 3 we have
Axyy) -Ax+y) =-n(1 —e ") gy7(0). (12)
Taking into account that m,,,) <m, +1 and f{x,,,) <f(x,,) we have f{ x,,,,,) <f(x,,). This
means that the sequence {f{ X)) } is nonincreasing for all £ and therefore { { x,,)) } CL(x,) is convergent.
By using (8) and (6) for all £ >M we have

f(xl(k)) :f(xz(/f)-l TYaum -0, 1)) =  max ){ﬂxzu-) _,-_1)} —77(1 —e h-1) I 8in -1 [ 2. (13)

(k) - Osjsmiyp) -1

As {f{x,)} is convergent we obtain from ( 13) that
lim( —m) (1-e™91) [lgy | *=0. (14)

—> 00

If the conclusion of Lemma 1 is true then there exists some & >0 such that for £ large enough
&l =&
This implies that
lim(1-e ") =0

k—oo

which means

,}iﬁ,}tzm =0.
So we have
thg Il ¥iw -1 I =0.
Hence it can be derived from the Theorem in 3 that
fimflxqy) = limf(x,). (15
By the rule for accepting the step y,(¢,) we have
Sxp) =flxgy) sn(1-e") gyi(0) = —n(1-e") g g. (16)

Combining ( 14) (15) and ( 16) yields that
fim(1=e™) =0
and hence
ity =0.

Therefore
lim |, || =0
which establishes ( 11) .
Theorem 1 Let {x,} be the sequence generated by the algorithm. Then
1i£rlinf g, Il =0. (17)
Furthermore no limit of the sequence {x,} is a local maximizer of f.
Proof If the conclusion of the theorem is not true without loss of generality we assume that there exists

some g >0 and a positive index K such that || g, || =& Vk>K. By Lemma?2 we have that klim lv.(t) | =

0 and I}imtk =0. The acceptance rule (8) means that for large enough k&
t t n
f(xk"")’k(;k)) - x,) Bf(xk+7/k(;k)) _f(xl(k)) >-n(l-e ”)g/tgk (18)

t
where w € (0 1) . For composite functionj(xk + 'yk(fk)) we have
®

R P e

. [
From (18) and (19) we have from g,y7,(0) <0 and 1 - e < that
®

o) 0 - v s 2) ()
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t t t, Uk t,
(1) Lelyi(0) +ol )= % n(1 - )]elyi(0) +o )0 (20)
) ® ® ®
t,
Dividing (20) by —- and using 1 =1 >0 and (g,) " 77,(0) <O we obtain
®
lim(g,) " y7(0) =0. (21)
From (6) (21) means that when t,—0 as k—
~lim | g, || > = limgl,(0) =0 (22)

which means that ( 17) is true.

Similar to the last part of Theorem in 3 we also get no limit point x* of {x,} is a local maximizer of f.

4 Numerical Experiments

Numerical experiments on the new gradient-path algorithm with the nonmonotonic technique are performed.
We set
M=10 75=0.4 w=0.2.
We compare the new algorithm ( NMG) with an algorithm proposed in 11  which is called GBB. The numerical
results are shown in Table 1. We report the final value (f) the number of iterations ( IT) CPU time in seconds

(time) . For most of problems the new algorithm is competitive in the number of iterations and CPU time.
Table 1 Results for our algorithm NMG and GBB

Problem n f Iter time
TRIGONOMETRIC( NMG) 100 3.263 2e - 009 60 0.046 0
TRIGONOMETRIC ( GBB) 100 3.117 6e - 006 67 0.0780
TRIGONOMETRIC( NMG) 1 000 3.679 8e - 008 72 0.4370
TRIGONOMETRIC ( GBB) 1000 4.861 6e —009 74 0.5160
TRIGONOMETRIC( NMG) 10 000 5. 447 2e - 009 152 10.4220
TRIGONOMETRIC ( GBB) 10 000 9. 353 0e - 009 203 12.296 0
EXTENDED POWELL ( NMG) 100 2.013 5e - 006 249 0.0620
EXTENDED POWELL ( GBB) 100 1. 834 7¢ - 006 339 0.1880
EXTENDED POWELL ( NMG) 1000 4.723 3e - 006 251 0.3750
EXTENDED POWELL ( GBB) 1000 4.016 8e — 006 464 0.4530
EXTENDED POWELL ( NMG) 10 000 1.984 7e - 006 288 2.4380
EXTENDED POWELL ( GBB) 10 000 5. 640 2e - 006 641 2.3900
PENALTY ( NMG) 100 9.024 9e - 004 9 0.0160
PENALTY ( GBB) 100 9.024 9¢ - 004 25 0.0160
PENALTY ( NMG) 1000 0.010 315 15 0.0620
PENALTY ( GBB) 1 000 0. 009 745 45 0.063 0
PENALTY ( NMG) 10 000 0.099 0 22 0.1870
PENALTY ( GBB) 10 000 0.099 0 74 0.4220
EXTENDED ROSENBROCK ( NMG) 100 4.567 9e - 008 121 0.0320
EXTENDED ROSENBROCK ( GBB) 100 2.924 4e - 009 71 0.0470
EXTENDED ROSENBROCK ( NMG) 1000 0.0179 123 0.078 0
EXTENDED ROSENBROCK ( GBB) 1000 3.327 6e -010 89 0.0940
EXTENDED ROSENBROCK ( NMG) 10 000 1.203 9¢ - 010 128 0.500 0
EXTENDED ROSENBROCK ( GBB) 10 000 5.058 4e -010 90 0.3910
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