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Optimal AOR for Rank Deficient
Least Squares Problem
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Abstract: This paper studied the optimal parameters and asymptotical semiconvergence factor of AOR methods for rank
deficient linear least squares problem and presented the explicit expressions of these factors. Finally two numerical ex—
amples are given to illustrate our results.
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Numerous techniques have been proposed for obtaining the least squares solution of the overdetermined sys—

tem
Ax =b (1)

where A is a complex rectangular m X n matrix and b is a vector of size m. Among these direct or indirect meth—
ods iterative methods are often utilized. In the case that A is of full column rank Chen ' augmented (A b) to
a block 3-cyclic matrix and suggested a combined direct-iterative method. Niethammar de Pillis and Varga °
then overcame the problems encountered by Chen in applying the SOR method to the augmented system. Mark—
ham Neumann and Plemmons ° proved that “2-block SOR” is superior to “3-block SOR”. Yiannis G Sar—
idakis * determined the optimal values when pertaining extrapolated iterative schemes to least squares problems.
In the case that A is rank deficient Miller and Neumann ° essentially developed the theory of “2-block SOR”
and Tian ® applied AOR method for finding the least squares solution.

The outline of this paper is as follows. In section 1 we devote necessary notation and preliminaries. In sec—

tion 2 we examine the optimal parameters and asymptotical semiconvergence factor of AOR methods for rank de—
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ficient linear least squares problem and present the explicit expressions of these factors. These work are based on
known results from the optimal 2-cyclic AOR 7 and are further results to the previous researchers in the past

twenty years. Finally we give the numerical examples.
1 Preliminaries

Throughout the paper C™*" denotes the space of m X n complex matrices and C"*" if matrices are of rank
r. ForAeC"™" A" o(A) p(A) denote the conjugate transpose the spectrum of A and the spectral radius of
A respectively. Moreover 8(A) =max{ IAl: A ec(A) A#1} and ||A |, = m
Consider the augmented systems of ( 1)
A 1 b
[ 0 A 0

where r is named as the residual vector it is well known that the solution £ € C™ of (2) is a least squares solu—

X

] r=b-Ax (2)
r
tion to (1) that is
|b-A%| =min | b -Ax | .
xeCm
Suppose A € C"*" and its partitioned block form is written as
B [Au Alz]
AZI AZZ
where A, € CI*". Set B=A, A;,' C=A'A, and a = || B ||,(i.e. « is the largest singular value of
V'B" B) . Then the augmented system (2) is singular and therefore it can be represented as
Az=b

E41| 0 Ir

-

&0 g 0
%2 D @ D [1421 Imfr 0 A22 D
. L, . .
where z=J " Up=0°0x, b,cC and A = U O Split A as

Or, O HOH oo A, A, 00

oo HE O . . 0

Lie, [ 0 0o A, A, 0O
Ay 0 0 05 0 0 o0 0 -I -A,0
Ch,, 1 o od D o 0 oO _a b

A:D 21 m-r ' D_D . _ 0 0 AZZD:D_L_U
oo o0 A, o0 D -4, 0 00mo0 o 0 O
0 0 . . 0 0
DO 0 0 I”_rD % _Azz _Alz OD E) 0 0 I,,fr I:l

this kind of decomposition was presented by Miller and Neumann ° . Then the AOR iteration matrix is defined by
L =(D-yL) ' (1-w)D+(w-y)L+0U =

PRC)
01 -w)l 0 —wA/ -wC[
0 0
0 (1-w)1,_, wB 0
i : . (3)
0 0 o(y-1)B (1-w)I, —wyB B 0 0
o o ~o(y-1)’Ay w(y-1)A,(I1+yB"B) 1, 0O

and the AOR iterative scheme is
Zp1 =L, 2z, +o(D -yL) “'b.
Set

m-—r

(1-w)I wB
" lo(y-1)B" (1-w)l,-wyB B

by interchanging of rows and columns 2 and 4 3 and 4 of L, , respectively we obtain its similar matrix
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dl-w)l -oC * * [
O O
. 0 I, . *
L, =0 d (4)
O 0 r,, O
0 0
U 0 U
From (3) and (4) we have
O-(Lyw) :O-(Ly(u) :{1 - 1} Ua—( Tya))' (5)

Lemmal Aeo(T,,)

M+ 2(0-1) +oyp] A+(w-1)"+o(w-y)u; =0. (6)

I,., -B I,., 0 0 0 0 B o
o E B B B B
B I 0 I -B" 0 0 0

r r

and ,u,f e (B’ B) satisfy the relationship

Proof Let

then its associated Jacobi matrix is

-B 0

and J° has the nonpositive spectrum. Thus J, is weakly cyclic of index 2 and S is 2-eyclic *° . In addition the

S 0 B
J =L+U-= [ ]
AOR iteration matrix of § precisely is T, , i.e.
o L
T,,=(1-vyL) (1-0)I+(w-y)L+wU .
Since teo(T,,) and £ eo(J,) satisfy the relationship £=(1-y+y) &€ " and T,,=(1-w)l+oT,,
we immediately have ( 6) .

Theorem 1 The semiconvergence region D( see Fig. 1) of AOR method is

0 O<w<—2 —u,

5| V1+ad

. w=2 1 (2-w)’
%(w) —w+ e <’y<7[w+7] =flw) y#0

where two numbers 7y, and vy, appeared in Fig. 1 are defined by vy, =
2 ~ 2
1+ V1 +a T V1+p
Proof Replace “a= || B ||,” by “a=p(J,) " in Theorem 2. 1 in
7  then (7) follows.
Theorem 2 Set

P :Lw,yaz +w -1 +Lwa vyl +dy -4

with 8% =min{u 1y’ eo(B" B) }.

2 2
y=g(w)
1
p2=1—w—%w‘ya2+%wa VYol +4y -4 %

( 1- w) 2 w( y - w) :82 ( y 2w) if Bz >0 Fig.1 Semiconvergence region according
ps = . ( ) 20 to L,,, of AOR method
—oly=Zw it B =

pi=V(1-0) ~0(y-0)d (y<w).
Then p( T, ,) has its expression on the region D as follows:
p(T,,) =p; on the subregioni i=12 3 4
where in the case that 8 >0 the subregions 1 2 3 4 are as shown in Fig.2 and in the case that 8 =0 the
subregions 1 2 3 4 are as shown in Fig. 3. Moreover curves are denoted as follows:
in Fig.2:
2
2+ yo'

C w
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Cyipy =ps

Cyip, =ps
in Fig. 3:

, 4
Ciiw= .
4 +'yoz2 +a x/')/zoz2 +4y -4

Proof By results obtained in Theorem 2.2 —2.5 of 7  we can directly get the above expressions of

p( Ty a)) *

v

¥i=1

Ve

> @

Y Wy @ 0
A

2 2

o’ =

Fig.2 Distribution regions of p(7, ) when B'B is nonsingular Fig.3 Distribution regions of p(7, ) and &(L, )

when B'B is singular

2 Expression of 6( L,,) Optimal Parameters and Asymptotical Semiconver—
gence Factor of L,
From (4) or (5) we have
S(L,,) =max{ Il -wl p(T,,)}
so we compare p( T, ,) with |1 —w! on the subregion i(i=1 2 3 4) to get the expression of 5( L, ,) . First

we state a critical result in the following theorem.

Theorem 3 Set

P :%w'ya2+w—l+La)a 'yzaz +4Y—4

2
_ 1 2 1 2 2
pz_l—a)—?wya Ty wa Vy«a +4y -4

p;=l-0(y=o0)

pi=v(1-0)" —0(y-0)d (y<w).
Then 8( L, ,) has its expression on the region D as follows:
1 on the subregion 1
E)z on the subregion 2
8(L,,) = .
5 on the subregion 3
Cp, on the subregion 4
where in the case that 8> =0 the subregions 1 2 3 4 are as shown in Fig.3 and in the case that 8 >0 the
JE— 4 JE—
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subregions 1 2 3 4 are as shown in Fig. 4.

Proof First we compare p, =%w’ya2 +w -1 +%a)a Vy'a® +4y -4 with |1 —w! on the subregion 1.

Ifw=1 thenp, >w -1 itshowsthats(L,,) =p,. f o<l theanBI—wifandonlyifLwya2+w—l+

2
1 72 . 4 - .
—wa vy o +4y -4=0 thatis to say o= . When y, <y <1 itis easy to verify
2 4 +ya’ +a Vy'a +dy -4
that 4 > 2 5. Thus the curve Cj is located in the right side of the curve €, and it

d+ya’ +a VYol +4y -4 2 +ya
2
connects the point 1?(2_1_72 1) with P(y, y,). The point R is located on the curve C,. The curve C; sepa-
ya

rates the subregion 1 into two parts the left and the right sides of C,. By simple analysis we have
p: on the right side of C,
=(1 —w on the left side of C,

p: on the upper of the line y =1.

Then we compare p, with |1 —w! on the subregion 2. Since w < 2 5 ('subregion 2 is on the left side of C})
+ya

it follows that 1 —w?%wyaz >0. Thus 0 <w <1 and |1 —wl =1 —w. In addition 'y’ +4y —4 =y« if and

only if y=1 and vy’ +4y -4 =q if y = 1. Therefore we have
<l-o ify=<l
Plz1-w ify=l.

So that the subregion 2 is separated into two parts by the line y =1 then comes the expression of §( L., ,) .

5(Lyw) ={

Lastly we consider cases on the subregion 3 and 4. When w<y<1 itholdsp;<I1 -w!| =1 —w and we

p» on the upper of the line y =1

1 —w on the lower of the line y =1.

have 8( L, ,) =1 —w on the subregion 3. When w=vy we have p, =11 —wl hence §(L,,) =p, on the subre-
gion 4.

Summarizing the above discussion we know that in the case 8 =0 the above Fig. 3 is also suitable for the
distribution of §( L, ,) but in the case that B’ >0 we must repartition the subregions 1 2 3 and 4 shown in
Fig.3 to get Fig. 4.

In the coming theorem we give the fundamental result of this paper.

Theorem 4 The optimal parameters of the AOR methods for solving the rank deficient least squares prob—
lem are

2

1+1+a

W=Y =Y, =

and the asymptotical semiconvergence factor is
2
. e
min §(L,,) =1-y,=—"""——.
(enep 7 (1+/1+a%)2

Proof We’ Il discuss this problem by distinguishing two cases according as 8° =0 and g° >0.
(1) In the case that 8° =0( see Fig.3):

(L

Yb 71:) =

Noting that p, is decreasing on @ and increasing on 7y p, on the subregion 2 has the minimization point ()
2

2
(2+72 1) and the minimum —< 5. p3 =1 —w on the subregion 3 has the minimization point P(y, y,) and
o4 +o

the minimum 1 - +,. For finding the minimization point of p, on the subregion 1 we need only to observe magni—

_5_
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tude on the curves C, and C;. Based on the above analysis on

p, and p; we can know that ( and P are the minimization
2
. . « .
points of p, the minimums are ol and 1 —+,. Since p, =
+o

V(1 +a®) w® =(2 +7ya’) w +1 is decreasing on y and is de-

creading on @ in the left side of the line I, where [;: w =

2 +Ia2
2(1 +a’)

S the intersecting point of C, and y =y, p, on the subregion 4

2
which connects the point (0 —7) with the point
o

has the minimization point P and the minimum 1 —vy,.
(2) In the case that 8° >0( see Fig.4):

p, on the subregion 2 has the minimization point R
2

2
(72 1) and the minimum —<
2+« 2

+ Olz‘

p; on the subregion 3 and p, on the subregion 4 have the
same minimization point P(y, y,) and the common minimum
1 -y,

p; on the subregion 1 has the minimization points R and P

2
. . a
the corresponding minimums are Yo and 1 —vy,.
+ o

Fig4 Distribution regions of 8(L, )

when B'B is nonsingular

In summary regardless of whether 87 =0 or 8> >0 (L, ,) on the region D has two local minimums 1 -

2 2
o

2

[0

(03

2

o .
= and 5. It is easy to observe that

(1+/1+a%)? 2+« (1+/1+a%)? 2+«

<

. Thus Theorem 4 follows.

Remark 1 If 8 >0 (i.e. B B is nonsingular) we have §( L,,) #p(T,,) on the region D; Ifg° =0

(i.e. B" B is singular) we have §( L,,) =p(T,,) on the region D.

3 Numerical Examples

In this section we present two numerical examples to illustrate our theory. The first example is in the case

that 8° =0 and the second one is in the case that 8 >0. Moreover Fig.3( 8 =0) is suitable for both rank de—

ficient and full column rank least squares problems.

Set

o :Lwyaz ro-1+t0a Yo' +4y -4

2 2

p=1-w —La)yoa2 +Lwa «/'yzoz2 +4y -4

2
ps=l-w(y=o0)

2

pi=V(1-0)"-0(y-0)d (y<w).

g 0 0g o 0g

Example 1 LetA:S) 1 1% OrA:Eb 1EthenrankA=2 B=01 a=|BJ,=1 o( B’ B)

O 1 10 O 10
={10} ’=1 B'=0 w,=1.4142 y,=0.8284 v, =1.

The optimal results of AOR of this example are shown in Table 1 and the four subregions 1 2 3 4 shown in

Fig. 3 are as follows:
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Subregion 1

y=1 2 $a)$%(2+'y—«/y2 +4y -4);

2+y
4 1 3
0.8284<y<1 Swo<~(2+y-Vy +4y-4).
4+vy+ «/'y2 +4y -4 2
Subregion 2
2
=1 < .
v O<w 24y

Subregion 3
4 :
4+y+ «/'y2 +4y 4

0<y=<0.8284 0<w<y.

0.8284<y<l 0<o<

Subregion 4

0<y<0.8284 y<a <2—;Y;

-2<y<0 O<w <2—;X.

Table 1 Optimal results of AOR when B" B is singular

point( @ ) associated subregion i  expression of §( L., ) value of §( L, )
(0.5 2) 1 1 0.707 1
(0.7 1) 1 P 0. 400 0
(0.2 5) 2 s 0.9403
(0.5 1) 23 P2 s 0.5000
(0.7 0.7) 34 ps s 0.3000
(0.8 0.8) 3 4 Ps Pa 0.200 0
* (0.8284 0.8284) 1 3 4 P1 P3 P4 0.1716
(0.9 0.9) 1 P 0.593 1
(1 0.5) 4 Pa 0.707 1
(1 0.8284) 14 P1 P4 0.4142
(1.4 0.82) 4 P4 0.9859
(0.2 -1) 4 Pa 0.938 1
d 0 2 og
b 1 0 20 0 .
Example 2 LetA:é) Lo 2D then rankA =2 B=[2 a=|Bl|,=2 o(B B) ={4 1}
2 0 4 o0

o =4 B =1 w,=0.8944 v, =0.6180 v, =0.8284.

The optimal results of AOR of this example are shown in Table 2 and the four subregions 1 2 3 4 shown in
Fig. 4 are as follows:

Subregion 1

2 1 3
>1 — " <w<—(2+4y -2 /4y +4y —4);
Y 2y w<5(+7 vy +4y -4)

0.6180<y=<l 4 sw<i(2+4y—2 Vay +4y —4).
414y +2 /Ay +4y -4 5

Subregion 2

2
= =
v=l O<w 2 +dy
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Subregion 3
4 .
444y +2 /Ay +4y -4

0<y=<0.6180 O<w=<y.

0.6180=sy<l O<ow<

Subregion 4

0<y<0.6180 y<a <2L54Y;

~0.5<y <0 0<w<2L54Y.

Table 2 Optimal results of AOR when B B is nonsingular

point( ) associated subregion i expression of §( L., ) value of §( L, )
(0.2 2) 1 o 0.894 4
(0.146 3) 1 Py 0.9705
(0.2 1.5) 2 P 0.8633
(0.3 1) 23 P> s 0.7000
(0.4 0.4) 3 4 ps ps 0.6000
(0.6 0.6) 34 Py 0. 400 0
* (0.6180 0.6180) 1 3 4 P1 P3 P4 0.3820
(0.65 0.65) 1 Py 0.8450
(0.6 0.3) 4 . 0.938 1
(0.7 0.6) 4 P 0.608 3
(0.8 0.6) 4 P4 0.8246

Remark 2 The optimal parameters (@ 7y) in Table 1( in the case B" B is singular) and Table 2( in the
case B" B is nonsingular) are (0.8284 0.8284) and (0.6180 0.618 0) respectively which testify the re—
sults in Theorem 4 that the optimal parameters of the AOR methods for ranking deficient least squares problem

are @ =7y =vy,.
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