
Pressure Spectrum for Birkhoff Averages

Wang Chenwei1，Huang Ping2

( 1． School of Mathematical Sciences，Nanjing Normal University，Nanjing 210046，China)

( 2． Institute of Science，PLA University of Science and Technology，Nanjing 211101，China)

Abstract: The strategy behind the use of Legendre transforms is to shift，from a function with one of its parameters an in-
dependent variable，to a new function with its dependence on a new variable． In this paper，we show that pressure spec-
tra may be obtained as Legendre transforms of functions T: R→R arising in the thermodynamic formalism． The primary
hypothesis we require is that the functions T be continuously differentiable． In this way we make rigorous the general par-
adigm of reducing questions regarding the multifractal formalism to questions regarding the thermodynamic formalism．
These results hold for a broad class of measurable potentials，which includes ( but is not limited to) continuous func-
tions．
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［摘要］ Legendre变换的作用是将一个独立参变量函数转化为一个新的独立参变量函数．本文证明了在热力学
形式中压谱可以由函数 T: R→R的 Legendre变换所获得．所考虑的函数 T为连续可微．用这种方法我们将重分
形的问题转化为热力学问题，这些结果对更广一类的可测函数仍成立，包含了( 而不仅限于) 连续函数．
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Multifractal analysis is a subarea of the dimension theory of dynamical systems． Briefly speaking，it studies
the complexity of the level sets of invariant local quantities obtained from a dynamical system． Usually，we con-
sider three local qualities: pointwise dimensions，local entropies，and Brikhoff averages． These functions are u-
sually only measurable and thus their level sets are rarely manifolds． Therefore，to measure the complexity of
these sets it is appropriate to use global quantities such as the topological entropy or the Hausdorff dimension．
The basic elements of the multifractal formalism were first proposed by Halsey et al in［1］，where they consid-
ered what they referred to as the dimension spectrum or the f( α) -spectrum for dimensions，which characterizes
an invariant measure μ for a dynamical system f: X→X in terms of the level set of the pointwise dimension．

The pointwise dimension of μ at x is defined as

dμ ( x) = limε→0

logμ( B( x，ε) )
logε

，

provided the limit exists，and the level sets are denoted

—8—

第 35 卷第 2 期
2012 年 6 月

南京师大学报( 自然科学版)
JOURNAL OF NANJING NORMAL UNIVERSITY( Natural Science Edition)

Vol． 35 No． 2
June，2012





KDα = { x∈X | dμ ( x) = α} ．
Many measures of interest are exact-dimensional，that is，the pointwise dimension is constant μ-almost eve-

rywhere． In particular，this is true of hyperbolic measure ( those with non-zero Lyapunov exponents almost every-
where) ［2］． For an exact-dimensional measure，one of the KDα has full measure，and the rest have measure 0，and
so we measure the sizes of these sets with the Hausdorff dimension rather than with the measure; in this way we
obtain the dimension spectrum for pointwise dimensions，which is given by the function

D( α) = dimHK
D
α ．

One may consider the measure of small balls which are refined dynamically，rather than statically． Rather
than B( x，ε) we consider the Bowen ball of radius δ and length n，given by

B( x，n，δ) = { y∈X | f k ( y) ∈B( f k ( x) ，δ) ，for k = 0，1，…，n} ．
The local entropy of μ at x is defined by

hμ ( x) = limδ→0
lim
n→0

－ 1
n logμ( B( x，n，δ) ) ，

provided the limit exists． We denote the level sets of the local entropy by
Kε

α = { x∈X | hμ ( x) = α} ．
It was shown by Brin and Katok［3］ that if μ is ergodic，then one of the level sets Kε

α has full measures，and
the rest have measure 0; thus we must once again quantify them using a ( global) dimensional characteristic． It
turns out to be more natureal to measure the size of the sets Kε

α with the topological entropy rather than Hausdorff
dimension; because these level sets are in general not compact，we must use the definition of topological entropy
in the sense of Bowen［4］． Upon doing so，we obtain the entropy spectrum for local entropies

ε( α) = htop ( Kε
α ) ．

For Gibbs measure on conformal repellers，this spectrum was studied in［5］． Takens and Verbitskiy［6］ car-
ried out the multifractal analysis in the more general case of expansive maps satisfying a specification property．

In fact，the proofs of the known results for both the dimension and entropy spectra contain ( at least implicit-

ly) a similar result for the Birkhoff spectrum． Writing the sum of φ along an orbit as Snφ( x) =∑
n－1

k = 0
φ( f k ( x) ) ，

the Birkhoff average of φ at x is given by

φ + ( x) = lim
n→∞

1
n Snφ( x) ，

provided the limit exists． The level sets of the Birkhoff averages are
KBα = { x∈X |φ + ( x) = α} ，

and the Birkhoff ergodic theorem guarantees that for any ergodic measure μ，one of the level sets has full meas-
ure，and the rest have measure 0． Thus we once again measure their size in terms of topological entropy，and ob-
tain the entropy spectrum of Brikhoff averages

B( α) = htop ( K
B
α ) ．

One important example of a Birkhoff spectrum is worth noting． In the particular case where f is conformal
map and φ( x) = － log‖Df( x) ‖，the Birkhoff averages coincide with the Lyapunov exponents: λ ( x) = φ +

( x) ． In this case we will also denote the level sets by
KLα = { x∈X |λ( x) = α} ，

it turns out that we are able to examine not only the entropy spectrum for Lyapunov exponents
LE ( α) = htopK

L
α，

but also the dimension spectrum for Lyapunov exponents
LD ( α) = dimHK

L
α

by using a generalisation of Bowen’s equation to non-compact sets．
The Legendre transform is an important tool in theoretical physics，playing a critical role in classical me-
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chanics，statistical mechanics，and thermodynamics． As long as the thermodynamic functions are given，we can
systematically study the thermodynamic properties of the system with Legendre． In ［7］，Climenhaga gave the
Legendre transform of the Birkhoff entropy spectrum． Furthermore，we can define the Birkhoff pressure spec-
trum: for g∈C( X) ，

Pg ( α) = PKBα
( g) ，

where PKBα
( g) denote the topological pressure for g on non-compact set KBα ． According to the variational princi-

ples for non-compact set version in［8］，we immediately have

Pg ( α) = PKBα
( g) = sup

μ∈M( KBα，f)
h( μ) + ∫gd{ }μ ．

What we concern is whether the Birkhoff pressure spectrum has the form of Legendre transformation and the
dual form． This result is given in Theorem 1，which applies to continuous maps f: X→X，function g: X→R and
function φ: X→R which lies in a certain class A f ; this class contains，but is not limited to，the space of all
continuous functions． For such maps and functions，we show that Pg ( α) is the Legendre transform of the func-
tion TB，φ，g : q P( qφ + g) ，provided TB，φ，g is continuously differentiable and equilibrium measures exist． If
the hypotheses on TB，φ，g only hold for certain values of q，we still obtain a partial result on Pg ( α) for the corre-
sponding values of α．

1 Definitions and Results
Let ( X，ρ) be a compact metric space with metric ρ，f: X→X a continuous map，and φ: X→R a continu-

ous function． Consider a finite open cover U of X and denote by Sm ( U) the set of all strings U = { Ui0…Uim － 1
:

Uij∈U} of length m =m( U) ． We put S = S( U) = ∪
m≥0

Sm ( U) ．

To a given string U = { Ui0…Uim － 1
}∈S( U) we associate the set

X( U) = { x∈X: f j ( x) ∈Uij，for j = 0，…，m( U) － 1} ．
Given ZX and N∈N，we let S( Z，U，N) denote the set of all finite or countable collections G of strings

of length at least N which cover Z; that is，GS( U) is in S( Z，U，N) if and only if
( 1) m( U) ≥N for all U∈G，and also
( 2) ∪

U∈G
X( U) Z．

Then we define a set function by

M( Z，α，φ，U，N) = inf
S( Z，U，N) ∑U∈G (exp － αm( U) + sup

x∈X( U) ∑
m( U) －1

k = 0
φ( f k ( x ){ }) ) ，

and the critical value of m( Z，α，φ，U) = lim
N→∞

M( Z，α，φ，U，N) by

PZ ( φ，U) = inf{ m( Z，α，φ，U) = 0} = sup{ m( Z，α，φ，U) = ∞ } ．
The topological pressure is PZ ( φ) = lim

|U |→0
PZ ( φ，U) ，where

|U | = max{ diamUi |Ui∈U}
is the diameter of the cover U．

Furthermore，the Carathéodory function rC ( Z，α) and 珋rC ( Z，α) ( where ZX and α∈R) depend on the
cover U and are given by

rC ( Z，α) = lim
N→∞

R( Z，α，φ，U，N) ，珋rC ( Z，α) = lim
N→∞

R( Z，α，φ，U，N) ，

where

R( Z，α，φ，U，N) = inf
G ∑U∈G (exp － αN + sup

x∈X( U)∑
N－1

k = 0
φ( f k ( x ){ }) ) ( 1)

and the infimum is taken over all finite or countable collections of strings GS( U) such that m( U) = N for all
U∈G and G covers Z．

The critical value of rC ( Z，α) and 珋rC ( Z，α) are separately denoted by
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CPZ ( φ，U) = inf{ rC ( Z，α) = 0} = sup{ rC ( Z，α) = ∞ } ，
and

CPZ ( φ，U) = inf{珋rC ( Z，α) = 0} = sup{珋rC ( Z，α) = ∞ } ．
Similarly，the lower and upper Carathéodory capacity are separately defined by

CPZ ( φ) = lim
|U |→0

CPZ ( φ，U) ，

and
CPZ ( φ) = lim

|U |→0
CPZ ( φ，U) ．

As shown in［8］，we have

CPZ ( φ) = lim
|U |→0

lim
N→∞

1
N logΛ( Z，φ，U，N)

and

CPZ ( φ) = lim
|U |→0

lim
N→∞

1
N logΛ( Z，φ，U，N) ，

where

Λ( Z，φ，U，N) = inf
G
∑
U∈G (exp sup

x∈X( U)
∑
N － 1

k = 0
φ( f k ( x ){ }) )

and the infimum is taken over all finite or countable collections of strings GS( U) such that m( U) = N for all
U∈G and G covers Z．

In the following we set

CP*
Z ( φ) = lim

δ→0
lim
N→∞

1
N log inf

EN is an ( N，δ)
spanning set for

(
Z

∑
y∈EN

eSNφ( y )) ．

We got the following lemma．
Lemma 1 Suppose φ: Z→R is continuous，then we have CPZ ( φ) = CP*

Z ( φ) ．
Proof Given δ ＞ 0，let

ε( δ) = sup{ |φ( x) － φ( y) | | ρ( x，y) ＜ δ}
and observe that since φ is continuous and X is compact，φ is in fact uniformly continuous，hence ε( δ) is finite，
and lim

δ→0
ε( δ) = 0．

Choose an open cover U of Z such that |U | ＜ ε( δ) and let γ( U) be the Lebesgue number of U． Sup-
pose EN = { x1，x2，x3，…} is an ( N，γ( U) ) spanning set of Z． Then for each xi there exists Ui∈SN ( U) such
that B( xi，N，γ( U) ) X( Ui ) ; let G ' = { Ui} ，and then

Λ( Z，φ，U，N) = inf
G ∑U∈G (exp sup

x∈X( U)∑
N－1

i = 0
φ( f i ( x ){ }) ) ≤

∑
Ui∈G '

(exp sup
x∈X( Ui)
∑
N－1

i = 0
φ( f i ( x )) ) = ∑

Ui∈G '
exp( Nε( δ) + SNφ( xi ) ) =

∑
x∈EN

exp( Nε( δ) + SNφ( x) ) = exp( Nε( δ) )∑
x∈EN

exp( SNφ( x) ) ．

Hence we have
CPZ ( φ) ≤CP*

Z ( φ) ．
For the other inequality，fix a cover U of X with |U | ＜ δ． Given G∈S( Z，U，N) ，we may assume without

loss of generality that for every U∈G，we have X( U) ∩Z≠ ( otherwise we may eliminate some sets from G，
which does not increase the sum in ( 1 ) ) ． Thus for each such U，we choose xU∈X ( U) ∩Z; we see that
X( U) B( xv，N，δ) ，and so

Λ( Z，φ，U，N) = inf
G ∑U∈G (exp sup

x∈X( U)∑
N－1

i = 0
φ( f i ( x ){ }) ) ≥ inf

EN is an ( N，δ)
spanning set for Z

∑
x∈EN

exp( SNφ( x) ) ．

Thus CPZ ( φ，U) ≥CP*
Z ( φ，U) ，and taking the limit as δ→0 gives
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CPZ ( φ) ≥CP*
Z ( φ) ．

Remark 1 If FN is an ( N，δ) separated subset of Z of maximum cardinality then FN is an ( N，δ) spanning
set for Z． Hence，we have

PZ ( φ) ≤ CPZ ( φ) ≤ lim
δ→0

lim
N→∞

1
N log sup

FN is an ( N，δ)
separated set for Z

∑
x∈FN

exp( SNφ( x) ) ．

Definition 1 Given a function g: R→［－ ∞，+ ∞］，we may refer to either of the following as the Leg-
endre transform of g:

gL1 ( x) = sup
y∈R
( g( y) + xy) ，

gL2 ( x) = inf
y∈R
( g( y) － xy) ．

If g is concave ( g″ ＜ 0) ，then the Legendre transform of g most naturally refers to gL1 ; if g is convex g″ ＞
0，the most natural meaning is gL2 ． However，each of the gLi is defined without reference to concavity or convexi-
ty，and so we may consider gL1 and /or gL2 even if g is neither convex nor concave ( g need not even be continu-
ous) ．

Our main result is to give the Legendre transform of the Birkhoff pressure spectrum of the following function:

TB，φ，g ( q) = sup
μ∈Mf( X)

h( μ) + ∫qφ + gdμ: g∈ C( X{ }) ．
Finally，before stating the general result，we describe the class of functions to which it applies． Given a

function φ: X→R，let C( φ) X denote the set of points at which φ is discontinuous． Then we letA f denote the
class of function φ: X→R which satisfy the following conditions:
( A) φ is bounded ( both above and below) ;
( B) μ( C( φ) ) = 0 for all μ∈Mf ( X) ．
In particular，A f includes all continuous functions f∈C( X) ． It also includes all bounded measurable func-

tions φ for which C( φ) is finite and contains no periodic points，and more generally，all bounded measurable
functions for which C( φ) is disjoint from all its iterates． We will see later that passing from C( X) to A f dose not
change the weak* topology at measure in Mf ( X) ，which is the key to including discontinuous functions in our re-
sults．

Lemma 2 Let X be a compact metric space，f: X→X be continuous，and φ∈A f ． Let μ∈Mf ( X) be an
invariant measure，and consider a sequence of ( not necessarily f-invariant) measures { μn}M( X) such that μn

→μ in the weak* topology． Then

lim
n→∞∫φdμn = ∫φdμ．

Proof
See Theorem 2． 1 in［7］．
Lemma 3 Let X be a compact metric space，f: X→X be continuous，and η，ζ∈A f ． Let { Pn}R + be

any positive sequence． Fix ZX and let β1，β2∈［－ ∞，∞］be given by

β1 = inf
x∈X

lim
n→∞

1
n Snη( x) ，

β2 = supx∈X
lim
n→∞

1
n Snη( x) ．

Finally，suppose that there exists a constant γ ＞ 0 such that for every n∈N and δ ＞ 0，there exists an ( n，
δ) -separated set EnZ with

∑
y∈En

eSnζ ( y) ≥ γPn．

Then there exists μ∈Mf ( X) satisfying the following:

∫ηdμ ∈［β1，β2］，
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h( μ) + ∫ζdμ≥ lim
n→∞

1
n logPn．

Proof See Theorem 2． 1 in［7］．
Theorem 1 ( The pressure spectrum for Birkhoff averages) ． Let X be a compact metric space，f: X→X

be continuous，and φ∈A f，g∈C( X) ． Then TB，φ，g is the Legendre transform of the Birkhoff pressure spec-
trum:

TB，φ，g ( q) = supα∈R
( Pg ( α) + qα) = PL1

g ( q)

for every q∈R．
Proof By Birkhoff’s ergodic theorem，every ergodic measure ν has ν( KB

α ) = 1 for some α，and so for ν-

almost every x∈KBα ( in particular，for some x∈KBα ) ，we have ∫Xφdν = φ + ( x) = α ． It follows that

TB，φ，g ( q) = sup
μ∈Mf( X)

h( μ) + ∫qφdμ + ∫gd{ }μ ≤

sup
α∈ (R

sup
ν∈MfE( KBα )

h( ν) + ∫gd{ }ν + q )α ≤ sup
α∈R
( PKBα
( g) + qα) = PL1

g ( q) ，

where the inequality h( ν) + ∫gdν≤ PKBα
( g) follows from Theorem A 2. 1 in［8］．

Now we prove the reverse inequality by showing that TB，φ，g ( q) ≥Pg ( α) + qα for all α∈R． To this end，we
construct for every ε ＞ 0 a measure μ∈Mf ( X) such that

h( μ) + ∫gdμ + ∫qφdμ≥ Pg ( α) + qα － qε．

To this end，we fix ε ＞ 0 and N∈N，and consider the following“approximate level sets”:

Fε，N
α ( φ) = ∩n≥N

x∈X | | 1n Snφ( x) － α | ＜{ }ε ，
Fε

α ( φ) = ∪N∈N
Fε，N

α ( φ) ．

For these we have
KBα ( φ) =∩ε ＞ 0F

ε
α ( φ) ．

For any g∈C( X) ，

PKBα
( g) ≤ sup

N
lim
δ→0

lim
n→∞

1
n log sup

Fn is an ( n，δ)
separated set for Fε，Nα

∑
y∈Fn

exp( Sng( y) ) ．

Applying Lemma 3，with Pn = sup
Fn is an ( n，δ)

separated set for Fε，Nα

∑
y∈Fn

exp( Sng( y) ) ，ζ = g，η = φ，Z = Fε，N
α ，and γ = 1． Let

Fn be the ( n，δ) separated set for Fε，N
α and satisfying

log∑
y∈Fn

exp( Sng( y) ) ≥ logPn － 1．

We see that the measure μ which is constructed as a weak* limit of empirical measures on the separated sets

Fn satisfies h( μ) + ∫gdμ≥ lim
n→∞

1
n log | Pn | and ∫φdμ ＞ α － ε ． It follows that

TB，φ，g ( q) ≥ h( μ) + ∫gdμ + ∫qφdμ≥ lim
n→∞

1
n log | Pn | + qα － qε =

lim
n→∞

1
n log sup

Fn is an ( n，δ)
separated set for Fε，Nα

∑
y∈Fn

exp( Sng( y) ) + qα － qε．

Let δ→0，we have TB，φ，g ( q) ≥CPFε，Nα
( g) + qα － qε． Taking the supremum over all N yields

TB，φ，g ( q) ≥Pg ( α) + qα － qε．
Since ε ＞ 0 was arbitrary，this implies

TB，φ，g ( q) ≥Pg ( α) + qα，
which completes the proof．
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Theorem 2 For any g∈C( X) ，the domain of Pg ( α) is bounded by the following:
αmin = inf{ α∈R |TB，φ，g ( q) ≥qα － max | g | for all q} ，
αmax = sup{ α∈R |TB，φ，g ( q) ≥qα － max | g | for all q} ．

That is，KBα = for every α ＜ αmin and every α ＞ αmax ．

Proof Suppose that KBα is non-empty; that is，there exists x∈X such that φ + ( x) = lim
n→∞

1
n Snφ( x) = α．

Consider the empirical measures

μn，x = 1
n∑

n－1

i = 0
δfi( x) ．

Choose any subsequence nk such that μnk，x converges in the weak* topology to μ∈Mf ( X) ． Then by Lemma

2，we have ∫φdμ = α，and in particular，

TB，φ，g ( q) ≥ h( μ) + ∫qφdμ + ∫gdμ≥ qα － max | g |

for every q∈R．
Theorem 3 Suppose that TB，φ，g is C

r on ( q1，q2 ) for some r≥1，and that for each q∈( q1，q2 ) ，there
exists a ( not necessarily unique) equilibrium state νq，g for the potential function qφ + g． Then

Pg ( α) = TL2
B，φ，g ( α) = inf

q∈R
( TB，φ，g ( q) － qα)

for all α∈( α1，α2 ) ，where αi = T'B，φ，g ( qi ) ． In particular，Pg ( α) is strictly concave on ( α1，α2 ) ，and C
r ex-

cept at points corresponding to intervals on which TB，φ，g is affine．
Theorem 3 is an easy consequence of the following Lemmas．
Lemma 4 If νq，g is an ergodic equilibrium state for qφ + g，then the Brikhoff spectrum Pg is concave at

α = α( νq，g ) = ∫Xφdνq，g ( 2)

in the following sense; there exists a line lR2 through ( α，Pg ( α) ) such that the graph of Pg lies on or below
l．

Proof Observe that since νq，g is ergodic，we have νq，g ( K
B
α ) = 1，and hence h( νq，g ) + ∫gdνq，g≤PKBα

( g) ．

Now given α'∈R，we have
Pg ( α') ≤ ( P

L1
g )

L2 ( α') = ( TB，φ，g )
L2 ( α') = inf

q'∈R
( TB，φ，g ( q') － q'α') ≤

TB，φ，g ( q) － qα' = PL1
g ( q) － qα' = h( νq，g ) + ∫qφdνq，g + ∫gdνq，g － qα' ≤

PKBα
( g) + q( α － α') = Pg ( α) + q( α － α') ．

Thus we may take l to be the line through ( α，Pg ( α) ) with slope-q．
Corollary 1 For any α as in ( 2) ，we have

Pg ( α) = TL2
B，φ，g ( α) ．

Proof Follows from Lemma 4 and α = α'．
Lemma 5 ( Ruelle’s formula for the derivative of pressure) Let ψ and  be Borel measurable functions．

If the function
q PZ ( ψ + q)

is differentiable at q，and if in addition νq is an equilibrium state for ψ + q，then
d
dqPZ ( ψ + q) = ∫X dνq ．

Proof See Proposition 9. 3 in［7］．
Lemma 6 If TB，φ，g is continuously differentiable on ( q1，q2 ) and qφ + g has an equilibrium state νq，g for

each q∈( q1，q2 ) ，then every α∈( α1，α2 ) = ( T'B，φ，g ( q1 ) ，T'B，φ，g ( q2 ) ) is of the form ( 2 ) for some ergodic
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νq，g ．
Proof Since T'B，φ，g is continuous，the Intermediated Value Theorem implies that for every such α there

exist q such that T'B，φ，g ( q) = α． Thus applying Lemma 5 with ψ = g and  = φ，we see that any equilibrium
state νq，g for qφ + g have νq，g ( φ) = α． If ν is not ergodic，then some element νq，g in its ergodic decomposition is
also an equilibrium state，and we are done．
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