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Pressure Spectrum for Birkhoff Averages
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Abstract: The strategy behind the use of Legendre transforms is to shift from a function with one of its parameters an in—
dependent variable to a new function with its dependence on a new variable. In this paper we show that pressure spec—
tra may be obtained as Legendre transforms of functions T: R—R arising in the thermodynamic formalism. The primary
hypothesis we require is that the functions T be continuously differentiable. In this way we make rigorous the general par—
adigm of reducing questions regarding the multifractal formalism to questions regarding the thermodynamic formalism.

These results hold for a broad class of measurable potentials which includes ( but is not limited to) continuous func—
tions.
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Multifractal analysis is a subarea of the dimension theory of dynamical systems. Briefly speaking it studies
the complexity of the level sets of invariant local quantities obtained from a dynamical system. Usually we con—
sider three local qualities: pointwise dimensions local entropies and Brikhoff averages. These functions are u—
sually only measurable and thus their level sets are rarely manifolds. Therefore to measure the complexity of
these sets it is appropriate to use global quantities such as the topological entropy or the Hausdorff dimension.
The basic elements of the multifractal formalism were first proposed by Halsey et al in 1  where they consid—
ered what they referred to as the dimension spectrum or the f{ a) -spectrum for dimensions which characterizes
an invariant measure y for a dynamical system 2 X—X in terms of the level set of the pointwise dimension.

The pointwise dimension of u at x is defined as

d,(x) = limeed BLx 2))
&0 loge

provided the limit exists and the level sets are denoted
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K/ ={xeXld,(x) =a}.

Many measures of interest are exact-dimensional that is the pointwise dimension is constant g-almost eve—
rywhere. In particular this is true of hyperbolic measure ( those with non-zero Lyapunov exponents almost every—
where) . For an exact-dimensional measure one of the K has full measure and the rest have measure 0 and
so we measure the sizes of these sets with the Hausdorff dimension rather than with the measure; in this way we

obtain the dimension spectrum for pointwise dimensions which is given by the function

A a) =dim,K_.
One may consider the measure of small balls which are refined dynamically rather than statically. Rather
than B(x &) we consider the Bowen ball of radius § and length n given by
B(x nd) ={yeXIf'(y) eB(f"(x) 8 fork=01 - n}.
The local entropy of w at x is defined by

h,(x) =limlim — l;logp,( B(x n §))

30 n—0
provided the limit exists. We denote the level sets of the local entropy by
K, ={xeXlh,(x) =a}.

It was shown by Brin and Katok * that if u is ergodic then one of the level sets K? has full measures and
the rest have measure 0; thus we must once again quantify them using a ( global) dimensional characteristic. It
turns out to be more natureal to measure the size of the sets K? with the topological entropy rather than Hausdorff
dimension; because these level sets are in general not compact we must use the definition of topological entropy
in the sense of Bowen * . Upon doing so we obtain the entropy spectrum for local entropies

e(a) =h, (K).

For Gibbs measure on conformal repellers this spectrum was studied in 5 . Takens and Verbitskiy ® car—

ried out the multifractal analysis in the more general case of expansive maps satisfying a specification property.

In fact the proofs of the known results for both the dimension and entropy spectra contain ( at least implicit—

ly) a similar result for the Birkhoff spectrum. Writing the sum of ¢ along an orbit as S, ¢( x) = 2 o(fH(x))

the Birkhoff average of ¢ at x is given by
0" (%) =lim -5, 0(x)

provided the limit exists. The level sets of the Birkhoff averages are

K/ ={xeXlp'(x) =a}
and the Birkhoff ergodic theorem guarantees that for any ergodic measure g one of the level sets has full meas—
ure and the rest have measure 0. Thus we once again measure their size in terms of topological entropy and ob—
tain the entropy spectrum of Brikhoff averages

A a) =h,(KD).

One important example of a Birkhoff spectrum is worth noting. In the particular case where f is conformal
map and @(x) = —log | Df( x) | the Birkhoff averages coincide with the Lyapunov exponents: A(x) =¢"
(x) . In this case we will also denote the level sets by

K ={xeXIA(x) =a}
it turns out that we are able to examine not only the entropy spectrum for Lyapunov exponents

Y.(a) =h, K

top™ " a

but also the dimension spectrum for Lyapunov exponents
(@) =dim,K/
by using a generalisation of Bowen’ s equation to non-compact sets.
The Legendre transform is an important tool in theoretical physics playing a critical role in classical me—
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chanics statistical mechanics and thermodynamics. As long as the thermodynamic functions are given we can
systematically study the thermodynamic properties of the system with Legendre. In 7  Climenhaga gave the
Legendre transform of the Birkhoff entropy spectrum. Furthermore we can define the Birkhoff pressure spec—
trum: for g € Z( X)

P(a) =P(8)
where Py4( g) denote the topological pressure for g on non-compact set K7. According to the variational princi—

ples for non-compact set version in 8  we immediately have

Pla) = Ple) = sup {h(u) + [adu} -

peM(KZ )

What we concern is whether the Birkhoff pressure spectrum has the form of Legendre transformation and the
dual form. This result is given in Theorem 1 which applies to continuous maps f: X—X function g2 X—R and
function ¢: X—R which lies in a certain class ./Z,; this class contains but is not limited to the space of all
continuous functions. For such maps and functions we show that P () is the Legendre transform of the func—

tion T, . ¢ P(qp +g) provided T is continuously differentiable and equilibrium measures exist. If

B g
the hypotheses on T, only hold for certain values of ¢ we still obtain a partial result on P,( ) for the corre—

sponding values of a.

1 Definitions and Results

Let (X p) be a compact metric space with metric p i X—X a continuous map and ¢: X—R a continu—
ous function. Consider a finite open cover 77 of X and denote by S, ( %) the set of all strings U={ U, ---U
U, e 22} of length m =m( U). We put S=S( %) = UoS’"( ) .

tm -1

To a given string U={ U, --U, '} € S( %) we associate the set
X(U) ={xeX:f(x) e U;,/- forj=0 - m(U) -1}.
Given ZCX and Ne N we let S(Z 7/ N) denote the set of all finite or countable collections £ of strings
of length at least N which cover Z; that is SCS( %) isin S(Z 7/ N) if and only if
(1) m(U) =N for all Ue & and also
(2) LTLEJ%X( U) DZ.

Then we define a set function by
g - k

and the critical value of m( Z o ¢ %) :\lij( Z a ¢ 7 N) by

P,(o %) =if{m(Z a ¢ %) =0} =sup{m(Z a ¢ %) =x}.
The topological pressure is P,( ¢) = lim P,(¢ %) where

1210
| 721 = max{ diamU, | U, € 7/}
is the diameter of the cover 7.
Furthermore the Carathéodory function r,( Z a) and r.( Z «) (where ZCX and a € R) depend on the
cover 72 and are given by

r(Z ) =limR(Z a ¢ % N) 7(Z o) =Emw}e(z a o % N)

Now

where

N-1
R(Zao 7N =inf] ¥e (_N : ; ) 1
(Zag 7N =inf{ 3 exp(-aN+ sup Folr(0) )} (1)
and the infimum is taken over all finite or countable collections of strings ¢C S( %) such that m( U) =N for all
Ue “and Zcovers Z.

The critical value of r.( Z «) and r,(Z «) are separately denoted by
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CP,(¢ %) =inf{r,(Z ) =0} =sup{r.(Z a) ==}

and
CP,(¢o 7) =inf{r.(Z a) =0} =sup{r.(Z o) ==}.
Similarly the lower and upper Carathéodory capacity are separately defined by
CP,(¢) = \l}fnmg/( o %)
and
CP,(¢) = lim CP,(¢ 7).
As shown in 8  we have
D o1 ;
CP,(¢) —Ilg&\lirgﬁlogA(Z ¢ 7 N)
and
T | ,
CP,(¢) = Iljmoﬂl,i%ﬁlog‘/l( Z ¢ 7/ N)
where

P . N-1 i )
Az W) =infl sew( s Zelr'()) )}
and the infimum is taken over all finite or countable collections of strings SC S( %2) such that m( U) =N for all
Ue Zand Zcovers Z.
In the following we set
CP,(¢) = lim lim Llog inf ( z e el )

-0 N Ey isan (N §)

spanning set for Z

We got the following lemma.

Lemma 1 Suppose ¢: Z—R is continuous then we have CP,(¢) =CP, (o).

Proof Given §>0 let

o(8) =sup{ lo(x) —g(3) | | p(x 5) <)
and observe that since ¢ is continuous and X is compact ¢ is in fact uniformly continuous hence g( 8) is finite
and %Er()le( 5) =0.

Choose an open cover 7 of Z such that |%/| < £( 8) and let y( 77) be the Lebesgue number of %7. Sup-
pose Ey ={x, %, x; =-} is an (N y( %)) spanning set of Z. Then for each x, there exists U, € Sy( %) such
that B(x, N y( %)) CX(U,); let & ={U;} and then

A(Z ¢ 72 N) = 1r}f{ Zexp( sup

v ey xeX(U

N-1

Y ep( s Selr () ) = 3, exp(Ne(8) + Siplx) =

=t xeX(U) & ey
2 exp(Ne(8) + Syp(2)) = exp(Ne(8)) Y exp(Sye(a)).
xeky xeky

Hence we have
CP(¢) <CP) ().

For the other inequality fix a cover 7 of X with 17| <8. Given e S(Z 7/ N) we may assume without
loss of generality that for every U e & we have X( U) NZ % J ( otherwise we may eliminate some sets from &
which does not increase the sum in (1) ). Thus for each such U we choose x, € X( U) NZ; we see that
X(U) CB(x, N8 andso

N-1

Mz 28 =i Foew g Tetr ) )}2,, B, Zew(Siel).
(e xeX(U) 7= N 18 ! xeky

spanning set for Z

Thus CP,(@ 7/) =CP, (@ 7/) and taking the limit as 0 gives
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CP,(¢) =CP, ().
Remark 1 If Fis an (N 8) separated subset of Z of maximum cardinality then F is an ( N §) spanning

set for Z. Hence we have

I
Pile) < CP(¢) <limlim Glog sup ; exp( Sye(2)) -

separated set for Z
Definition 1 Given a function g: R— —© + o  we may refer to either of the following as the Leg—
endre transform of g:

(%) =sup(e(y) +xy)

g"(x) =inf(g(y) —xy).
If g is concave (g" <0) then the Legendre transform of g most naturally refers to g"'; if g is convex g” >
0 the most natural meaning is g"2. However each of the g" is defined without reference to concavity or convexi—
ty and so we may consider g"' and/or g2 even if g is neither convex nor concave (g need not even be continu-
ous) .

Our main result is to give the Legendre transform of the Birkhoff pressure spectrum of the following function:

T,,,(q = su {h(,u) +fqgo+gd,u,:g e 24 X) }

peMAX)
Finally before stating the general result we describe the class of functions to which it applies. Given a
function ¢ X—R let Z{ ¢) CX denote the set of points at which ¢ is discontinuous. Then we let .7, denote the
class of function ¢: X—R which satisfy the following conditions:
(A) ¢ is bounded ( both above and below) ;
(B) w( Z(¢)) =0 for all we M(X).

In particular .7 includes all continuous functions fe Z( X) . It also includes all bounded measurable func-

tions ¢ for which Z{ ¢) is finite and contains no periodic points and more generally all bounded measurable

functions for which Z{ ¢) is disjoint from all its iterates. We will see later that passing from Z{ X) to .7, dose not
change the weak” topology at measure in M/( X) which is the key to including discontinuous functions in our re—
sults.

Lemma 2 Let X be a compact metric space f. X—X be continuous and g €.7,. Letpu e M'( X) be an
invariant measure and consider a sequence of ( not necessarily fHnvariant) measures {w,} CM( X) such that u,

—s in the weak™ topology. Then

e, - o
Proof

See Theorem 2.1 in 7 .

Lemma 3 Let X be a compact metric space f. X—X be continuous and n ¢e. 7. Let {P,} CR" be

any positive sequence. Fix ZCX and let 8, B, - o be given by

Bl ll’lf]lm ’llsnn( )

’JCEX

B = suplim S.().

Finally suppose that there exists a constant y >0 such that for every n e N and § >0 there exists an ( n
) -separated set E, CZ with

Z eS”g( y) 2 yPrl'

yeky,

Then there exists u e M ( X) satisfying the following:

fnd#« e BB
— 12 —
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W) + [cdu = Tim Liogp .

now I

Proof See Theorem 2.1 in 7 .
Theorem 1 ( The pressure spectrum for Birkhoff averages) . Let X be a compact metric space fi X—X

be continuous and ¢ € .7, ge Z( X). Then T is the Legendre transform of the Birkhoff pressure spec—

Teg

trum:
T,,.(q) =sup(P,(a) +qa) =P (q)

ae

for every ¢ e R.

Proof By Birkhoff” s ergodic theorem every ergodic measure v has v( K?) =1 for some o and so for y—

almost every x € K”('in particular for some x € K”)  we have Lgpdv = ¢ (x) = a. Iifollows that

Tooda) = sup (W) + fgodn + [sdu} <

weM

su ( sup {h(y) +fgdv}+q04) $§gg(1)k§(é’) + qa) =P§]((I)

ae ve Mi(KJ)
where the inequality A( v) + fgdv < Pys( g) follows from Theorem A 2.1in 8 .

Now we prove the reverse inequality by showing that 7,  (¢) =P, («a) +qa for all @ e R. To this end we

construct for every £ >0 a measure u M/ (X) such that

h( ) +fgd,u +fq¢d/u =P,(a) +qa-qe.

To this end we fix £ >0 and Ne N and consider the following “approximate level sets”:

n=N

File) = UF:(g).

F M) = ﬂ{xeXl |%Sngp(x) -al <8}

For these we have

K/(¢) = NF(g).

a
e>0

For any g e Z( X)

N |
! < = S
Prog) < suplimlim “log - sup = 3 exp(S,g(y)).
separated set for F§ NV~ "
Applying Lemma 3 with P, = ;S z exp(S,g(y)) (=g n=¢ Z=F" andy=1. Let
nisan(n yer,

separated set for F'g N
F, be the (n 8) separated set for F°" and satisfying
log > exp(S,g(y)) = logP, - 1.
Ye Fn

We see that the measure g which is constructed as a weak  limit of empirical measures on the separated sets

n

F, satisfies h(u) + fgd,u, = lim L10g | P, | and fgpd,u, > a — g . It follows that
N

n—o

1
T,,0) =h(p) + [edu+ [gpdu = lim log| P, | +qa - g5 =

n—o

1
lim —lo su exp( S + qo — qe.
los , sup 8>\y§,‘, p(S.&(5)) +ga-q
separated set for Fg N~

n—o

Let 50 we have T, (q) =CPp, x(g) +qa —qs. Taking the supremum over all N yields
T

Bog

(q) =P,(a) +qa-qe.
Since £ >0 was arbitrary this implies

B g( q) BP,‘;( @) +qo
which completes the proof.
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Theorem 2 For any g e Z( X) the domain of P ( «) is bounded by the following:
i, =inf{aeRIT,  (q) =qa —maxlgl for all ¢}
o, =sup{a e RIT ,;  (¢q) =ga —maxlgl for all ¢}.

That is Ka/’ = (J for every a < a,;, and every a >«

min max *

Proof Suppose that K’ is non-empty; that is there exists x € X such that ¢ *(x) = limLS"go( x) =a.

now 1

Consider the empirical measures

=
My = ;Z(Sﬁ(z)'
i=0
Choose any subsequence n; such that u, , converges in the weak ™ topology to w e M/( X) . Then by Lemma

2 we have fgod/.t = a and in particular

T,.a) = h(p) + [gpdu + [edu = ga - max| g
for every g e R.
Theorem 3  Suppose that T, ,is Z"on (¢, q,) for some r=1 and that for each g e (¢, ¢,) there
exists a ( not necessarily unique) equilibrium state v, , for the potential function g¢ +g. Then

P(a) =T"2

p el a) =qi£1£( T,,.(q) —qa)
for all e e (a, a,) where a; =T, ,(¢;). In particular P () is strictly concave on (a, a,) and 7" ex—
cept at points corresponding to intervals on which T, is affine.

Theorem 3 is an easy consequence of the following Lemmas.

Lemma 4 If p , is an ergodic equilibrium state for g + g then the Brikhoff spectrum P, is concave at

a=aov,,) = qudvq . (2)

in the following sense; there exists a line /CR” through ( « P,(a)) such that the graph of P, lies on or below
.

Proof Observe that since v, , is ergodic we have v, ( K7) =1 and hence h( v, + fgdvq <P g).
Now given a”e R we have

P(a) <(P)"(a) =(T,,,)"(a) = nf(T,,,(¢) —ga) <

q'eR
T,,.q) —qa" =P/q) —qa =h(v,,) + quodvqg + fgdvqg - qa’ <

Pyi(g) +9la-a) =P(a) +q(a-a).
Thus we may take [ to be the line through (o P,(«a)) with slope-y.
Corollary 1 For any o as in (2) we have
P(a) =T%, (a).
Proof Follows from Lemma 4 and o ="
Lemma 5 ( Ruelle’ s formula for the derivative of pressure) Let iy and ¢ be Borel measurable functions.
If the function
q P +qd)

is differentiable at ¢ and if in addition v, is an equilibrium state for s +g¢ then

QP o) = [ v,

Proof See Proposition 9.3 in 7 .
Lemma 6 If T

4o ¢ 15 continuously differentiable on (¢, ¢,) and g + g has an equilibrium state v, , for

18

each ge(q, ¢q,) thenevery ae(a; o) =(T1",,,(q) T ,,,(q)) is of the form (2) for some ergodic
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Proof Since T~

5 ¢ 18 continuous  the Intermediated Value Theorem implies that for every such « there

exist ¢ such that 7", . (¢) =a. Thus applying Lemma 5 with ¢y =g and ¢ =¢ we see that any equilibrium
state v, , for g +g have v, (@) =a. If v is not ergodic then some element v, , in its ergodic decomposition is

also an equilibrium state and we are done.
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