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Optimization-Based Domain Decomposition

Methods for H( div) -Elliptic Problem
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Abstract: In this paper we propose some optimization-based domain decomposition methods for H( div) -elliptic prob—
lem. Convergent properties are examined by choosing proper parameters. Some numerical testes are presented to demon—
strate the effectiveness of the method.
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In this paper we show how to use optimization-based domain decomposition methods to solve the following
boundary value problem of vector fields
—grad(dive) +Bu=f in 0
u'n=0 on 41 (1)
where (2 is a bounded polyhedral domain in R’(d =2 3) n is its unit outward normal vector B is a positive pa—
rameter and f e (L*()) “.

Domain decomposition methods( DDMs) have become increasingly important tools for solving PDEs for their
parallelism. They have been extensively studied and become a very active area of research in the past few years.
DDMs contain both overlapping and nonoverlapping decompositions which subdivide the computational domain
into overlapping or nonoverlapping subdomains. For a comprehensive account of the theory and the algorithm in
domain decomposition methods we refer to monographs 1 2 3 see also the review article 4 on nonoverlap—
ping DDMs. A class of nonoverlapping domain decomposition method which based on optimization strategies has
been previously proposed in 5 — 10 . The basic idea of these methods is that an appropriate cost functional is
minimized so that the optimal solutionsatisfies the partial differential equations which are linear or nonlinear and
the constraints force the solutions on the two subdomains to agree on the common interface.

In recent years there have been many techniques to solve H( div) problem such as multigrid and multilevel

11-13

methods twodevel overlapping Schwarz preconditioners '* iterative substructuring methods " and Neu-

mann-Neumann methods '° . For the background on H( div) -elliptic problem we refer to 17  see also mono—
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graph 18  where its application to the stabilized mixed formulations of the Stokes equations was introduced.
Some more significant applications of H( div) problem were proposed in 2 . To the best of our knowledge there
exit no work on the optimization-based nonoverlapping method to solve H( div) -elliptic problem. In this paper we
extend this method for solving H( div) -elliptic problem.

The paper is organized as follows. In section 1 some optimized-based domain decomposition methods are
provided for H( div) -elliptic problem and convergent properties are examined by choosing proper parameters. In

section 2 some numerical results are presented to illustrate the effectiveness of the methods.

1  Domain Decomposition for H( div) JElliptic Problem

For problem( 1) for simply we consider the case that {2 is partitioned into two connected nonoverlapping
sub-domains (2, and (2, so that 2=, Uf),. I' =£, N (), is denoted the interface between the two sub-domains.
Let I'y =0, NaN and I, =0, N 3. ( A two dimensional example is denoted by Figure 1) .

Let a pair of functions u, wu, satisfy the given equations in the n
subdomains:

—grad(dive; ) +u, =f in (£ (2)
ue'n=0 on I, fori=12.
We can easily prove that if the following interface conditions hold * :
u,*n, =u,*n, =X on I (3)
divu, =divu, =g on I’ (4)

then {u:ul, =u;, i=1 2} is the solution of( 1) here n, is the unit of (2 into two sub-domains

Fig.1 Nonoverlapping domain decomposition

outward normal of (2, on I.

The main idea of optimization-based domain decomposition method is to construct an energy functional J
(u, u, A g)overu, u, A and g in suitable case subject to(2) and make that {ul, wul, wen |, divul}
is its minimizer here u is the unique solution of problem( 1) . For an elaborate description of optimization-based
domain decomposition method please refer to 5 6 .

There are many choices of functional J(u, u, A g).In this paper we consider the following functional

1 < .
J(u, u, 1 g) =5 2 { luy-n -A| ?(l'" | divae; —g || ?/l} (5)
=

with approximate Hilbert spaces X; and Y; equipped with norms ||« ||y and |« |, (i=1 2) respectively.
Before proceeding to more detailed discussion we define some technical terms. First define the
Sobolev space
H(div; Q) ={v e(L*(0) ) :diwv el’(0)}.
Then the subspace of vectors in H( div; {2) with vanishing normal component on 9{2 is denoted by H,( div; (2) :
Hy(div; Q) ={veH(div;Q) :u*nl,,=0}.
Besides let the harmonic extensions w, ={ R,(8) i=1 2} be defined by
grad( divw,) +Bw, =0 in ()
w,en=0 on I, (6)
w,*n, =0 on I.
Then we can define the Steklov—-Poincaré operator S; by
S.(6) =( -1)""'divw, on I (7)
where w; are the solutions of( 6) for i =1 2 respectively. We may note that the Steklov-Poincaré oprators S;( ¢ =
1 2) and their inverses are bounded and they are self-adjiont definite. Thus the interface conditions( 3) and( 4)
are equivalent to
S,(A) +S,(A) =divw, —divw, on T (8)
0
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where w, e Hy( div (2,) are the solutions of the following equations
—grad( divw,) +pw,=f in £,
wen=0 on T, (9)
wen =0 on I
for i =1 2 respectively.
From 6 we know that we may construct optimization-based domain decomposition method via Neumann
control or Dirichlet control. In this paper we restrict our interest in Neumann control and try to find a g that min—

imizes the suitable norm of u, *n, —u,*n, on the common interface I'. Hence letting X Y be two Hilbert spaces

we have
Min J(g) = |lun, —u,on, | %
over g € Y and u, u, are subject to( 2) and( 4) . (10)
To solve the minimization problem( 10) we apply the following gradient type iterative method. Let J be the
Fréchet derivative i.e. (J(u) ») H=(dJ(u+w) =dt) |,_,. Then the gradient iteration is given by choosing
some approximate sequence a, >0 and setting
g =8 —at(g). (11)
For convenience we define operators P and () by
(uPv) ,=(uv), VYuoveX (12)
(uw Qv) p=(uv), VYuveY (13)

where( + +) ;. denotes the standard inner product in L>( I") . Through direct calculation we can obtain the Fréchet
derivative by
(-],(g) QU) r =(]/(g) v) yz(ul'nl —u,°n, P(Slil +Szil)”) r Vguvel.
Thus viewing u, *n, and u,*n, as functions of g we have on I’
J(g) = Q_l( Sl_l +Sz_l) P(u,*n, —u,*n,).

Then we can apply gradient-iype iteration( 11) to solve minimization problem( 10) .

Theorem 1 Given o, >6 > 0 if the iteration( 11) is convergent and

uly =limu; for i=12

then u is the solution of( 1) on the whole domain ().

Let e, =g, — dive then we have

e = 1=, Q7 (ST +8)P(ST +8) e, =E(q) e, (14)

Therefore we obtain the following convergent result.

Theorem 2 The iterative procedure( 11) is convergent if and only if for any e,
;
| TT ECan) e | 20 as koo (15)
i=

in some suitable norm and with some suitably chosen sequence { a,} .
In the next subsections we are going to provide elaborate algorithms based on different examples of P
and Q.
1.1 Algorithm 1
In this subsection we consider the case X =Y =L*( I') . In this case P =(Q =1 the iteration is given by
g =g~ (ST +8, ") (uj*n, —uben)) on T. (16)
Let H. ( div; £2) represent a subspace of H( div; {2,) whose normal component vanish on I';. Then the correspond—
ing algorithm can be implemented in the following three steps.
(i) Find w; e Hp(div; ) (i=1 2) from
— grad( divuf) +Buf =f in ()
un=0 on T, (17)

divu! =g, on T;
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(ii) Find w! € Hp(div;£2) (i=1 2) from
—grad( divw!) +Bw! =0 in £,

]

wien=0 on T, (18)
divw! =( =1)"""(ulen, —ub+n,) on T;
(iii) Update the iteration data
g =g —a(wien, +wien)) on I. (19)
To consider the convergence of iterative procedure( 16) we know that the error equation is
e = T—a (ST +571)7 e,
Thus if we choose a, satisfy the equation
T-a, (S +5Y)%) vo .,
“1< sup ( (S, 2)0) r o1
vel2(D) (v o),
then the iterative sequence( 16) is convergent. In particular if we take
. S, +S
55 ap LS #5000,
ve12(T) loll r
and choose
2
O<fsa, < = (20)
B

then the iterative procedure( 16) is convergent. Therefore we have the following result.

Theorem 3 The iterative procedure( 16) is convergent for any e, and for any sequence «, satisfying( 20) .
1.2 Algorithm 2

Here we consider the case X =H'?( I') and Y = L>( I') . We may have some choices for the norms the de—

“"and Q =1 then the iteration is

tails can refer to 5 6 . For example we can take that P = (S;' +S,")
given by
k k
g1 =& —o(uy*n, —uy*n)) on I (21)
where u} and u} are the solutions of equations( 17) .
For convergence we have the error equation
S1 -l
e = - (S +5,) e
Using the similar analysis used in the above subsection if we take

B> ((S7 +S,)v o),

erln ol

and choose

O<fsq, < (22)

m>‘l\)

then we have the following result.
Theorem 4 The iterative procedure( 21) is convergent for any e, and for any sequence «, satisfying( 22) .
1.3 Algorithm 3
Here we consider the case X =H'*(I') and Y e H™'?( I') . We may have some choices for the norms the
details we can refer to 5 6 . For example we can take that P =S, and Q =S,”' then the iteration is given by
g =&~ (S, +8,) (uy*n, —us*n)) on T. (23)
The corresponding algorithm can be implemented in the following three steps.
(i) Find u! e Hp(div;£2) (i=1 2) from
— grad( divuf) +Buf =f in ()
un=0 on T, (24)

divu! =g, on T;



Zeng Yuping et al: Optimization-Based Domain Decomposition Methods for H( div) Elliptic Problem

(ii) Find w! € Hp(div;£2) (i=1 2) from
—grad( divw!) +Bw! =0 in £,
wien=0 on T, (25)
wien, =(ul*n, —uben)) on T
(ii1) Update the iteration data
i1 =& —a,(divw! —divw})  on T (26)
For convergence we have the error equation
epor= T—a, (ST +S8,") (S, +5) e,
From the result of well.known Dirichlet-Neumann alternating methods we have the following geometric conver—
gence result.
Theorem 5 There exists two constants ¢ and C such that for any e, and for any sequence { o} satisfying
O<eso,<C

such that the iterative sequence( 23) is geometrically convergent.

2 Numerical Experiments

In this section we report some numerical experiments. The test problem is a two-dimensional equations of
(Hin2={(x y»):(0<x<2 0<y<1)} where the coefficient 8 is set to be 1. We set the right-hand side

function so that the exact solution is given by

u(x 5) :(ul(x y)):(x(z—x) )

w,(xy) | \y(1-y)

Our numerical experiments are performed using MATLAB. The machine is a PC-ntlel( R) Pentium( R) Du-
al-Core CPU ES5300 2.60 GHz 1.96 G of RAM. (2 is divided into two parts £2, ={(x y):0<x<1;0<y<1}
and 2, ={(x 7) : 1 <x<2;0 <y <1} with the interface I'={(x y) :x =1 0 <y <1}. The finite element tested

here are the lowest rectangular Raviart-Thomas element. We set the initial value g, =0 in each iterative proce—
2
dure. The iteration is stopped when Error = Z (|luf-u,| 3;9[) <5 %1077,

i=1
Numerical results are provided in Table 1 —3 which shows iteration numbers for different parameter { o, }

for algorithms 1 —3. The iteration number is denoted by Iter.

Table 1 Numerical results for algorithm 1

h « Tter Error h o Iter Error
71073 1 100 0.049 989 710°° 1107 0.049 988
71074 759 0.049 050 5¢10°° 1549 0.049 952
310 7* 257 0.049 430 1-10* 774 0.049 987

% 1+1073 77 0.048 592 11—6 2:10 74 387 0.049 840
1.1-1073 70 0.048 438 310 258 0.049 691
1.3+10°3 59 0.048 788 4+1074 diverges
1.410 73 diverges

Table 2 Numerical results for algorithm 2

h « Tter Error h a Iter Error
11073 506 0. 049 802 1-10° 509 0.049 856
5+10°3 101 0.049 227 51073 102 0.048 614
71073 72 0.049 097 71073 73 0.047 822
% 1+1072 50 0.049 746 11—6 1+1072 51 0.047 434
3+102 17 0.041 269 2+10 74 25 0.048 248
5+10°2 10 0.039 967 3+10 74 diverges
5.5+10 2 diverges
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Table 3 Numerical results for algorithm 3

3

h «a Iter Error h o Iter Error
11073 253 0.049 577 1-10° 254 0.049 962
31073 84 0.049 332 31073 85 0.048 382
5.1073 50 0.049 746 541073 51 0.047 434
;— 1410 -2 25 0.047 217 % 14102 25 0.048 248
1.5+10 2 17 0.041 269 1.2+10 2 21 0. 045 830
2+10 2 12 0. 048 547 1.310°2 19 0.049 322
2.7+10 72 diverges 1.4+1072 diverges
Conclusions

In this paper three optimization-based domain decomposition methods are presented to solve H( div) -elliptic

problem and their convergent properties are obtained by choosing proper parameters. From the theory analysis we

conclude that when choosing the bigger parameter the algorithms will convergence more fast. However choosing

too big parameter may result in the divergence of algorithms. These observations are verified by the numerical ex—

periments which are provided in Table 1 —3. From the Table 1 —3 we observe that the computational complexity

of algorithm 2 is as much as that of algorithm 3 but they are both much lower than that of algorithm 1.
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