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Abstract: In this paper a SIR epidemic model is proposed to understand the impact of limited medical resource on infec—
tious disease transmission and Bogdanov-Takens bifurcation is analyzed. Our results suggest that the model may exhibit
vital dynamics when the basic reproduction number .7 is equal to a subthreshold value and the unique equilibrium is a
cusp of codimension 2.
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In recent years a lot of realistic mathematical models have been proposed ' =’ . The development of such
models aims at understanding the epidemiological transmission patterns and predicting the consequences of the in—
troduction of public health interventions to control the possible outbreak and spread of the disease. Besides some
interesting dynamical behaviors like Hopf bifurcation bi-stability backward bifurcation etc. have been observed
in these models.

In this paper we will focus on the Bogdanov-Takens bifurcation of an epidemic model considering the impact
of limited medical resource or treatment capacity on infectious disease transmission.

The organization of this paper is as follows. In section 1 we introduce the SIR epidemic model briefly. In

Section 2 Bogdanov-Takens bifurcation is presented. Section 3 is the discussion.
1 The Model

Let S(t) I(t) and R(t) denote the number of susceptible infective recovered individuals at time ¢ respec—
tively. Providing that the infected individuals can not recover unless they were given timely treatment in hospitals

based on standard SIR model with mass action incidence we can construct a model
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where all the parameters are positive and A is the recruitment rate of susceptible population; d is natural death
rate; v is the disease-induced death rate; ¢ is the maximum of treatment per unit of time and b the infected size at
which is 50% saturation( h( b) =c/2) measures how soon saturation occurs; 8 is the transmission rate.

Note that the first two equations are independent of the third one we need only to study the following re—
duced model:
S

=A-dS-p5I
dt
(2)

Hd7 _ o
%—BS[—(d+v)]—b+l

Model( 2) has one disease free equilibrium at £, = (% 0). Using the formulae in 8  a straightforward cal-

culation gives the reproduction number:
99 — lé
70 = d( bdibbv +c)’ (3)
The diseaseree equilibrium K, has two eigenvalues —d and R, — 1. Therefore we have the following propo—
sition:
Proposition 1 For the model(2) the disease free equilibrium E; is locally asymptotically stable if .72, <
1 and unstable if .72, > 1.

Let
_(B+d) (d+v) +B-A8
e B(d+v)
" :bd(d+v) +cd—,8Ab:bd(d+v) +cd,1_%) (4)
2 B(d +v) B(d+v) 0
A=d, —4a,.

For the existence of endemic equilibrium we have the following theorem:

Theorem 1 For model(2) we have

1.If %, >1 there exists a unique positive equilibrium E* (S™ 1)

2.1f %, =1 there is a positive equilibrium E* (S" I" ) when a, <0 otherwise there is no positive equilib—
rium.

3.1f #Z, <1 and a, =0 there is no positive equilibrium.

4.1If .%’0 <%, <1 and a, <0 there are two positive equilibria E* and E. .

5.1f %, :.%’0 and a, <0 E* and E, coalesce together as a unique equilibrium of multiplicity two.

6. 1f %, <.%’0 and a, <0 there is no positive equilibrium.

Where when exist E* (S* ;1" ) and E. (S. 1.) are the corresponding equilibria and

ST =n(I") S. =h(L.) I = _“‘;ﬂl* = _“‘2_ﬂ (5)

and
5 Ab(d+19) b(d+v) +(JA+4c)?
Ry c) = o
(c+b(d+1)) b(d+v)(b(d+v) +2(A+c)) +(A-¢)
Proof Let the right hand side of( 2) be zero and eliminate S. Then we have the following equation:
JR— 8 J—
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I +al+a,=0. (7)
If 72,> 1 then a, <0 and there is a unique positive root for( 7) which implies a unique endemic equilibri—
um E° (S" 1) exists.
If 72, =1 then a, =0 and there is a unique nonzero solution of( 7) I = —a, which is positive if and only if
a, <0. Then there is a unique endemic equilibrium E* (S I ) when a, <0 and there is not endemic equilibria
when a, = 0.
If 7, <1 then a, > 0. For(7) to have at least one positive root we must have
a, <0 and A=0.
Solving A =0 in terms of .72, one get %, = ., where
_ Ab(d+1) b(d+v) +(JA +yc)? (8)
(c+b(d+1)) b(d+v)(b(d+v) +2(A+¢)) +(A-¢)” ~
One can verify that providing ¢, <0 model( 2) has exactly 0 1 and 2 endemic equilibria for 2, < %, %, =

%o( C)

Ry Ry >R, respectively.
2 Bogdanov-Takens Bifurcation Analysis
In this section we focus on the Bogdanov-Takens bifurcation when .72, = /‘?30( ¢) . Evaluating the Jacobian of

the model(2) at E* (S™ ;1) gives

5

O-d-BI -BS" O
J:g ,8[* el g (9)
0 (b+1")*0
Then the characteristic equation about £~ is given by
N +H(T )x+I G(I' ¢) =0 (10)
where
. . ol A c(d+pl
HT o) =dpl = s G(Ic)zdfﬂf-((b”/f)z). (11)

It follows from Theorem 1 that when .72, = %,( ¢) and a, <0 two equilibria £, and £~ coalesce at the equi-
librium E° (S™ I') where

s AB-B-(bB8+d) (d+v) A
ro= s -4 12
2B(d +1) d+pl (12
Substituting( 12) into which in( 11) note that H(I" ;¢) =G(I ;¢) =0 is equivalent to
* dz( d +1}) 3

B(Bb +v) *(d ~Bb)

13
ee _(d+v) (B —dBb+pb+d°)* (13)
B(Bb +v) *(d - pb)
with d >Bb. One can easily get that C* >¢" where
2

d-b8
Thus( 9) has a zero eigenvalue with multiplicity 2 under the assumption( 13) . This suggest that( 2) may admit a
Bogdanov-Takens bifurcation. We confirm this by giving the following theorem.
Theorem 2 Suppose A =A" ¢=C" and d=28b +v. Then the equilibrium E~ of system(2) is a cusp of
codimension 2( a Bogdanov-Takens bifurcation point) .
Proof Suppose A=A" ¢=C".(12) becomes
. _d(d-Bb) d(d +v)°

- B(v+pb) 5 “B(v+pb) (d-pBb)" (15)

The translation
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x=S-S" y=I-T (16)
bring E” to the origin. Expanding the right hand side of the resulting system in a Taylor series about the origin

we obtain

S oo (el ) x-Sy -y
N : (17)

dax s ] bc 2 3
dt—Bl X+ *)2y+Bxy+7( 3y +0(y) .

c
(b+1 b+1)
Since the Jacobian J#0 there exist real linearly independent vectors x, and x, such that Jx, =0 and Jx, =x,.

These vectors are given by

o )
x1=(_Wﬁl) x,=(10)". (18)
Let
o o O
("):D (b+l )2 lg)() (19)
y/ O . Y
O gr 00
_Y y_ cy
X= ¥ x+,8(b+f)2 (20)

then( 17) becomes

dv oy Bl vy iR (X V)

de = (b+I)°
dY B(pb - d)[2 (21)
Bl B 2
o (bel ) X +dBXY +R,(X Y)
where R (i=1 2)is C* in( X Y) and R, =O( |( X Y) I’) . Making the near-identity transformation
*2
X=X Z=Y- (—;'BII—)X +BXY +R (X Y) (22)
we obtain
dx _
de
w7 (23)
E:%OXZ +a XZ +BZ° + Ry (X Z2)
where Ry, is C* in(X Z)and R, =0( |(X Z) I’) and
Bld +0) d*(d-ph)*
0T T (1) (B —dBb +Bb + )
(24)

W - _dB (d-pb) > +d’ -pb(2Bbd +v° +28b)
! (v+pb) (B°6° —dBb +1Bb +d°)
Note d >2Bb +v we have d’ —Bb(2Bbd +v" +2Bbv) >Bb( d> —2Bbd —v*> —2Bbv) > 0. Hence a,, <0 a,, <O.

Using a time reparameterization dt =( 1 —8X) d 7 (23) becomes

dX dz
{dT (1-px) 72 =(1 —BX) (ayX® +a, XZ +BZ* + R, (X Z)). (25)
Introducing new variables u =X and v =( 1 —8X) Z then(25) becomes
du _
dr ="
b (26)

E=a20u2+a“uv+0( [(uv) 7).

Thus E* is a cusp point of codimension 2 °
Next we consider(2) for all A and ¢ with |4 —A" | and l¢ = C" | small. Thus we let
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A=A" +¢g
(27)
c=C +¢,
in( 2) and we study the bifurcations of the resulting system
%:A" to, —dS - BSI
. (28)
dl (C +&)l
dt_’BS]_(d+v)[_ YA
Translating £ to the origin system( 28) becomes
= —(d+pl ) x-pS"y —pry
. . (29)
dy &1 . - be, bC +be, , 5
= - : ] — —_— 0 .
dt b+] +B x+(b+1)2y+ﬂxy+(b+l)3y+ (y)
Making translation
X=x Y=g, - (d+Bl)x-BS y—-Pxy (30)
we obtain
dX
T
&y (31)
Ay " Poo +p1oX +por Y +po X’ +p XY +p, ¥V + Ry (X Y)
where
B —C*ﬁS* I (b+]* ) & +bIBS* (b+]*),9132 - b( c +&,) g% +ﬁ25*2]* (b+]* ) 282
Poo = BS ( bil ) 3
P b 20dS ey S (b4 ) (d+BI ) &y +6(C +6) &l +20BS" I o, +

RS H(b+T )
BS L (b+1 ), =BS *(b+1) e, +2bdS" &, +2bC" BS I &,
2be,e, —bBS” (b+1 ) e, +2bC" &, -B(b+1 )¢,

Po1 = BS*(b_I_[*)}
dp(d - bB)*
= +
P2o szz —d,Bb +vﬁb + P2os
Pros = I - 208" (d+BI" ) g,6, +b(C" +&,) &l +26C" S (d+Bl ) e, +bS *(d +BI ) e,

TBS(b+T)?
_B(v+pBb) (d(d-pBb)> -pb(Bb+v)?) be,

P d(d ) (B —dgbepb+d) S (b1
_B (d-pb)’ +dv(d-pb) +d’ -Bb(2pbd +v* +2pby)
Pu = (Bb* —dBb +1Bb +d*) (d +v)

+Pue

1 N - " "
B (bal )] 26(C" +&) &, +2bS" (d+Bl ) &, —B(b+1) e,
and R, is C* in(X Y)and R,, =O( I(X Y) I’).

Introduce a new time variable T by dt =( 1 —p,,X) d 7. Rewriting T as ¢ we have

Pue =

dX
dr =(1-ppX)Y
W (32)
o = (1 =ppX) (P +P1oX +por Y +pX* +p XY +pp, V2 + R, (X V) .
Let u=X and v =( 1 - py,X) Y then(32) becomes
w_,
de
(33)

dv
E =Poo +(P10 _Zpoopoz) U +pov +(P20 +PO0P52 _2P10P02) u’ +(P11 _PmPoz) uv +R22( w v).
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R,,is C” in(u v) and Ry, =0( I(u v) I7).
Because
. B (d-pgb)* +dv(d-pb) +d’ —pBb(2Bbd +v" +2Bb)
ngmﬁopn = 272 2
210 & (Bb" —dBb+vyBb+d”) (d+v)
We have &’ —pBb(2Bbd +v* +2Bbv) >Bb( d* —2Bbd —v* —2Bbv) >0 when d >28b +uv.

Hence

lim (p, _Pmpoz) >0.

10 &0
By setting u =w — Lo rewriting w as u we have
Pu = PoiPo2
du_ v
dt
(34)
dv 2
dr =qoo + qrolt + @t +quv + Rys(u v)
where R,; is C* in(u v) and Ry; =0( I(u v) I’) and
_ Por (P10 =2PwPo2) Pél(l’zo +P00P(2)2 = 2p1oPo2
oo =Poo ~ + 2
Pu = PoiPo2 (P11 = PorPo2)
2poi( P20 + PooPo> = 2P10Pos)
d10 = P10 = 2PooPoz ~ 35
0 0 e P —PoiPo2 (35)
2
920 =P2PooPo> ~ 2P10Po
911 =P ~PorPo2-
By(31) and( 35) we have
. . dB(d -bp)°
1(}m%920: l(}mH( 0= zB P 2
10 &y eV &y B b - de +’UBb + d
and
S]Jgrgﬁo%l :gljgrgwpll >0.
2 3
. . _quu gy . . ..
By making the change of variables ¢ =—— 7 =-—— and ¢t = =7 in a small neighborhood of the origin and rena—
20 G5 qn
ming( £ 1) and 7 as( u v) and ¢ respectively we have
de

4 2
dv G4 +Mv+u2+uv+Rz4(u v)

di (130 A2
where R,,is C* in(u v) and R,, =O( |(u v) I°) .

Using the theorems in 9 or 10 we obtain the following local representations of the bifurcation curves in a

small neighborhood of the origin.

Theorem 3 Suppose d=28b + v at the Bogdanov point. Then the model( 2) has the following bifurcation
behavior in a small neighborhood of E :

(1) there is a saddle-node bifurcation curve

SN={(&, &) 4490 :(]?0 +o( 1( & &) |2) }
(2) there is a Hopf bifurcation curve
H={(¢ &) :(150 =o( (&, &) |2) 410 <0} ;
( 3) there is a homoclinic bifurcation curve

HLz{(Sl 32) 125¢ 40 +6(]To =o( |(31 82) Iz) }.
3 Discussion

In this paper for a SIR epidemic model with saturation recovery to understand the impact of limited medical
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resource on infectious disease transmission existence of equilibria were introduced under different conditions and

Bogdanov-Takens bifurcation was analyzed. Our results suggest that the model may exhibit vital dynamics when

the basic reproduction number .72, equal to a subthreshold value %’0( c) and the unique equilibrium is a cusp of

codimension 2.

Acknowledgements The authors are grateful to Professor Cui Jing-an and Professor Zhu Huaiping for their

valuable comments and suggestions.

10

References

Alexander M E Moghadas S M. Periodicity in an epidemic model with a generalized nondinear incidence J . Math Biosci
2004 189:7596.

Hethcote H W. Mathematics of infectious diseases J .SIAM Review 2000 42:599-653.

Hu Z Teng Z Jiang H. Stability analysis in a class of discrete SIRS epidemic models J . Nonlinear Analysis: Real World Appli—
cations 2012 13:2 0172 033.

Shi X Cui J Zhou X. Stability and Hopf bifurcation analysis of an eco-epidemic model with a stage structure J . Nonlinear A—
nalysis 2011 74:1 088 106.

Wan H Zhu H. The backward bifurcation in comportmental models for West Nile virus J . Mathematical Biosciences 2010
227:20-28.

Wang W. Backward bifurcation of an epidemic model with treatment J . Math Biosci 2006 201:58-71.

Zhang X Liu X. Backward bifurcation of an epidemic model with saturated treatment function J .J Math Anal Appl 2008
348:433-443.

van den Driessche P Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of
disease transmission J . Math Biosci 2002 180:29-48.

Kuznetsov Y A. Elements of Applied Bifurcation Theory Applied Mathematical Sciences M . New York: Springer—
Verlag 1995.

Busenberg S Cooke K. Vertically Transmitted Diseases M . New York: Springer-Verlag 1993.



