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Blow-up Solutions to the Schrodinger-Hartree Equation
Tang Xingdong

(School of Mathematical Sciences, Nanjing Normal University , Nanjing 210023, China)

Abstract: In this paper,we study the blow-up solutions for the nonlinear Schrodinger-Hartree equation, we give another
characterization of the blow-up solutions.
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This paper is devoted to the study of the Schrodinger-Poisson system
10 u+Au=Plul"?u, (t,x) eR, xR,

AP=1lul", (1)
u(09x):u0(x)’
where u:R, xR —C,n=3 and 1+jl<p<1+d4—‘2'

One can verify that (1) is essentially equivalent to the following Schriodinger-Hartree equation
10 u+rAu=—(1-1""xlul”) lul"?u, (1,x) eR,xR",
u(0,x)=u,(x).
Miao,Xu and Zhao''' established global existence for solutions with finite energy in the case of d=6 and p=2.

(2)

Genev and Venkov'? established the existence of solitary wave solutions and local existence with initial data.

In this paper, following Ibrahim, Masmoudi and Nakanishi’s ideas®’, we characterize the ground state of in
terms of some constrained minimization problem,what’s more ,we obtain some blow-up criterion for the Schrédinger-
Hartree equation (2).

Notation Throughout this paper,we denote the Lebesgue L?-space on R by L( R ) with norm || - || 1<
o . We employ inhomogeneous Sobolev space H'(R*) , which is defined as H' (R*)= {ue L>(R"): | u | jn=
lu 341 Va |l 5<o0 |

We write X<Y to indicate X<<CY for some constant C>0. We use the notation X ~ Y whenever X <Y <X.

For ¢ € H'(R") ,we denote the scaling function gbg,_z by (l)f‘l_z(x) =e™p(e”x) ,and the differential operator L

acting on any functional J: H' (R") | >R by LJ(¢) = %J( (152,_2 ) I,-0- Then the scaling derivative of S(¢)is
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defined by
K(9)=15(8)= £8(8h ) L= [ 1761 LZER 101y 191, 3)
Define
m=inf[S(¢) b€ H' (R0} K()=0] , (4)
where

S(d)):%fm V1 fR |¢|2dx-ﬁ de (11117 117 (5)

and K(¢)is defined by (3). Now,we are able to state the main result of this paper.

Theorem 1 For 1+%<p<1+$,and any initial data

uye3:=|ffeH'(R") ,if e ’(R) |,
that satisfies(1) K(u,)<0,where K is defined by (3);(ii)S(u,)<m,where S is defined by (5) and m is defined

by (4).
Then , there exists a finite time T e (0,+o0 )such that liIrTl | Vu(t) || ,=+0o ,where ue C([0,T) ,H (R"))is

the corresponding solution to the Cauchy problem (2).

1 Preliminaries

1.1 Some known results

For the Cauchy problem (2) ,Genev and Venkov'?! established the local existence of weak solution , see also [4].
Proposition 1 For 2p<1+%2 and an initial data u, € H' (R") ,there exists T € (0,+c ]and a solution u € C

([0,T),H'(R"))of the Cauchy problem (2). Furthermore ,u is unique in C([0,7T) ,H' (R")),
(i)either T=+o ,or else T<+o ,and lin;l I Vu(e) || ,=+o;

(ii)u(t)satisfies the conservation of mass and energy,that is,for all t € [0,T).

M(u(t)) = Ld' uw(t) 12dy = fm' uy 1 7dx,

_ i 2 _i L] 2-d P P
E(u(t)) = sz({| Vu(e) | *de 2pfm(' 1250 5w 17) 1wl Pd.

Looking for standing wave solutions e“¢(x) for the equation of (2) leads us to consider the stationary equation
“Ap+d=(1+1""xlul”) lul"?u, xeR" (6)
It is easily seen that ¢ is a critical point of the functional (5) in H'(R"). Genev and Venkov"' established

the existence of the ground state solution of (5) in terms of the minimizing problem

Cd,p: lnf Jd’p(d)) ’ (7)

¢ e HI(RI)\{0}

I I3 | Vo |5

2-d
(Tt wl”) lul?
Rd

with J*7 ()=

For minimizing problem (7) ,it holds that
dp—(d+2

. d,p 2 d+2_(d_2) j 2 2-2p
— d,p _ 4 P y
Cd,p _¢EH12I13‘)\]<0}»J (d))_ d+2_(d_2)p( dp—(d+2) ” Q ” 2 )

where ( the unique positive radial ground state solution of (6) in H'(R*). The following lemma is useful in the

subsequent sections.

Lemma 1( Wely-Heisenberg inequality) **"  For any u € H'(R") ,we have

2
lullZ<5 Melully | V. (8)
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1.2 The variational characterization of the ground state
Inspired and motived by [3 ], we give a new variational characterization of the ground state of (6). Let us

decompose K into the quadratic and the nonlinear parts K(¢)=K’($)+K"(p) ,where
K($)=2 [ 17617, K'($)=-P D[ (1 piigiry g1,
Rd P R4
For any ¢ € H'(R?)\ {0} ,a direct calculation shows that
lim K°(¢ )= lim2 [ 176, 1= lim 26" K($)= 0. (9)
A—— ’ A——c Rd ’ A——
The following lemma shows that K is positive near 0 in the energy space.
Lemma 2 For any bounded sequence ¢, € H' (R*)\ {0} with lim K’(¢,) =0, we have K(¢,) >0, for
large n.

Proof Since K(¢,)tends to 0 as n tends to 0, we know that lim || V¢ || 3=0. Then by Hardy-Littlewood-

]

Sobolev and Gagliardo-Nerenberg inequalities'” , we have for large n,

2p

fRIfRI =y 171, (1) 1710, () 1"dady < [, [l oy, | Vb, 172 [, 1,777 =0 1] Vo, I13),
d d d+2

where we use the boundedness of | ¢, ||, and 1+%<p<1+d4f2. Therefore ,based the analysis above ,we get

K(p)=21 Vo,

p=(2) [ () 17165, (6) Py = | T, 11350
p RIYRE

for large n. This ends the proof.
Let us mention here two nonnegative numbers import for the following discussion:
p=min {2dp-2(d+2) ,max{4,0} | =4, w=min{2dp-2(d+2) ,min{4,0{ | =0.
The following lemma plays an important role in the succeeding argument.

Lemma 3

(a-L)S($)=2 | ¢ | g—(‘”‘iﬂ Ld (1 1P % 1wl Tul” dxdx, (10)

L(a~1)S($)= (2d+4-2dp) L= [ (1Lt 1) 1917, (11)
p R
Proof By the definition of L,we have
LIVeli=41Vels, Lldl:=0,
LI (1 x1$1) 11 de=(2dp-2d-4) [ (1-17x1$1") 11"dx,
R4 R4

direct calculation implies that

(B-1)$($)=2 14 13- D70 [ (11101 1974,

L(-L)S(d)= (2d+4—2dp)(d+j#f (11X 11 ds,

This ends the proof.
Using Lemma 3 ,we are allowed to replace the functional S in (5) with a positive functional H,while extending

the minimizing region from“K(¢$)=0"t0“K(d) <0”. Let
L
H)=(1-s@), (12)

then for any ¢ € H'(R*)\ {0}, it follows that H(¢$)>0,LH(¢) =0. Now,we can rewrite the minimization problem
(4) by using H.
Lemma 4 For the minimization m in (4) ,we have
m=inf{ H(¢) :d € H' (R)\{0] ,K($) <O},
where H is defined by (12) and K is defined by (3).
— 35 —
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Proof For the convenience ,we denote m=inf{H(¢$):p e H (R*)\{0} ,K(¢p) <0}.
Firstly , for any ¢ € H'(R*)\ {0} with K(¢b)=0,we have H($p)=S(¢d) ,we deduce that
m=inf{H(¢$) :p € H(R)\{0} ,K(p)=0! =inf{H(p) :p e H (R)\ {0} ,K(¢) <0}.

Hence ,m=m.

Finally, for any ¢ € H'(R*)\{0} with K(¢)<0,by (9),Lemma 2 and the continuity of K in A, we deduce
that there exists a A;<0 such that

K(¢1°,)=0,and S(d°,)=H(dy*,) <H(dy ,)=H(),

where we used LH(¢$) =0 in the above inequality. Hence m<m.

After these preparations,we can now characterize the ground state of (6) through the minimizer of (4).

Lemma 5 For the minimization m in (4) ,we have

m=5(Q),

where S is defined by (5) and Q is some radial ground state of (6).

Proof Let ¢, € H' (R*)be a minimizing sequence for (2) ,i. e.

K(¢,)<0,4,#0,H(P,) =m, ,llirfiH((b”):m' (13)

Let ¢, be the symmetric decreasing rearrangement of ¢,. By the Riesz’s rearrangement and Polya-Szegé ine-

] we have

qualities
K($,)<0,4,#0,H(p,) =H(p, ) =m, limH(P, )=m.
Therefore ,replacing ¢, by its symmetric decreasing rearrangement ¢, ,then using (13) ,we obtain that

K(,) 0., 20,5(,)= H(b, ) i S(,)=m. (14)
Combing (13)with (5),we have

pm+(2pd=2d—8) meuH () +(2dp-2d-8)S(,) =2 |, 13-4 [ (1ap=iciy 17) 1y, 17+
P RS

1 1 1 -
2dp-2d-8) |~ 2y R AR ’ o =
( p ) 2 || VI!/n || 2 + 2 || ltbn || 2 zpr({(l | Xl l!/" | ) | lpn | ]

211, I153+(dp=d=4) 19, Il Taway »
which implies that , is bounded in H'(R"). Hence after extracting a subsequence(still denote by #,) ,we have
W, — weakly in H'(R") ,for some ¢ in H'(R").
By the radial symmetry,we have also

W, — strongly in L'(R") ,for all 2<q<% ,

2d
I, 1”1 1” strongly in Li2(R?) |

therefore , the well-known Hardy-Littlewood-Sobolev inequality!”’ implies that

fd (11l 17) |¢"|P—>fd 1 1P ) 117 |

it follows that K(¢) <0, and H(¢) =m.
However, we still need to verify  #0. In fact, if ¢y =0, then K(¢,) = 0 implies that lim K (¢, ) =

n—r+0

—lim K"(,)=0,and by Lemma 2 ,we have K(,) >0 for large n,which is a contradiction.

n—+ow

Using LH(¢) =0,we are allowed to replace ¢ by its rescaling(still denote by #) ,such that
K(#)=0, ()= H(p)=m and =0,

which implies that ¢ is a minimizer of (4) and m=H ()= S(¢) >0. Hence, there exists a Lagrange multiplier
1 € R such that S"()=nK' ().

Then using the chain rule,denoting we arrive at

0=K()=LS()= <S"(¢) ,Lh>=n<K' () ,Lp>=nLS ().
Combing (11) with LS(¢)=0,it implies that
— 36 —
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L’S(p)=~(d+4—dp) (2d+4—2dp)% Ld (111 17) 117 <0,
therefore =0 and ¢ is a solution of (6),what’s more, i is nonnegative and radial. Since every solution ¢ in
H' (R")of (6) satisfies
K(¢)=(5"(¢),Lp) =0.
This implies ¢ is the ground state of (6).
We conclude this section with the following lemma,which gives the uniform bounds on the scaling derivative
functional K with the functional S below the threshold m and plays an important role for the blow-up analysis.
Lemma 6 Let S be defined by (5) ,for any ¢ € H' (R") with S(¢) <m.
(1)If K(¢)<0,then
K(¢) <-4(m-S(¢));
(ii)If K(¢) =0,then
K(9) Zminf4(m-5(0)) 2 AT v 3,
where K is defined by (3).

Proof Lets()\)=5(¢'\),n()\)=f (1 17'%1, 1") I b, |”dx, where ¢, =) ,. By (11) ,we have
R? ’

S”(/\)=/~w’(/\)—%(d+4—dp)n’()t)- (15)

Case 1 If K($)<0,then by Lemma 2 together with(9) ,there exists a real number A,<0 such that K( )=
0 and K(¢")<0 for A,<A <0.By (15),we get

$(A)= 4.9'()\)—%(d+4—dp)n'()\)= 4.9’()\)—%(d+4—dp) (2d+4-2dp)n(A) <ds'(1).

Integrating from A, to 0, we get

K(d)=5'(0)<4[5(0)=s(A) ] =4[S(d)-S(dp™) | <-4[m-S(d) ].
Case 2 K(¢)=0. We divide it into two sub cases:
When

2M1<(4>)<]i)(d+4—dp)(2d+4—2dp) j X1 11,

applying (15) ,we have
s"(A) <us"(A) (16)

for A =0. On the other hand,n”"(A)= %( d+4—dp) (2d+4-2dp)n(A)>0,implies that the right hand side of (16)
is negative and decreasing as long as n'>0. Hence ,we have

3'(/\)$5’(O)+J3 s"(r)dr$3'(0)+ﬁ [,us’(z')—pi(n+4—np)n'(r)]dr <

s'(0)+j: [,us'(r)—]%(n+4—np)n’(r)]dz‘$s’(0)+[,uﬂs'(0)—%(n+4—np)n'(0)J/\

as long as n'>0 holds. Hence (16) is preserved until A reaches at some finite A,>0,1. e. there exists a finite A,>0

such that s"(A,)=0. Now integrating (16) from O to A,,we have

0=K($") <K($)~4 [ (0)de=K(9) -4[5($")-5(8) ],
this means

K(¢)=4(m-S(¢)).
When

2uK () 2%(n+4—np) (2n+4-2np) fRd (1-17'x117) 11",
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%(d+4—dp)(2d+4—2dp) f 1 (- 17'%11") 1p1dx=—4 || Vo || 3+2(4+d—dp)K() ,

then we have
2uK(dp)=-4 | Vo | 3+2(4+d-dp)K(d),
which implies that

2(dp-d—4)

K==L T

This finishes the proof.

2  Blow-up Threshold

In this section,we proof Theorem 1. To investigate the blow-up phenomena,we introduce the so-called " virial

identity" .

Lemma 7"/ ( Virial identity) For 1+%<p<1+6/%2 and any initial u, € 3={f:fe H'(R"),IxIfe ’(R")},

there exists a unique maximal solution u € C([0,T),3) of (2). Moreover,the first variance V()= J lx 1% lu(t,
R4

x) I*dx, belongs to C*([0,T),3) ,and satisfies the virial identity
)j (1171 17) I p1” =4K(u). (17)
R4

Proof of Theorem 1 Let u, satisfy K(u,)<0,S(u,)<m and u(t) be the solution of (2) with initial data

d d+4
@V(ﬁ)Z 16E( u) —4(d—p

u,. Since u(t) satisfies the conservation of mass and energy,we have u, satisfy K(u,)<0,S(u,)<m and u(t) be

the solution of (2) with initial data u,. Since u(t) satisfies the conservation of mass and energy,we have
E(u(t))=E(uy), M(u(t))=M(y,),
S(u(1) )= A B (1) )+ M(u(1)) = 2E ) 45 My ) <m

In addition , there exists 6>0 such that
S(u(t))<(1-6)m.
Thus,by (17) and Lemma 7,we have

%V(t):‘”((u(t))$—4(m—S(u(t)))$—45,

which implies that there exists a positive finite time T such that linTlV(t) = 0. By Weyl-Heisenberg inequality (8)
P

and the conservation of mass,we have lim | Vu(z) || 5=+ and the proof is finished.
t—T
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