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Schr觟dinger鄄Hartree 方程爆破解的存在性

唐兴栋

(南京师范大学数学科学学院,江苏 南京 210023)

[摘要] 摇 本文研究了一类 Schr觟dinger鄄Hartree 方程,给出了爆破解的另外一种刻画.
[关键词] 摇 薛定谔方程,爆破,变分刻画

This paper is devoted to the study of the Schr觟dinger鄄Poisson system
i鄣tu+驻u=P |u | p-2u,摇 (t,x)沂R+伊Rd,

驻P= |u | p,
u(0,x)= u0(x

ì

î

í

ï
ï

ïï ),
(1)

where u:R+伊Rd |寅C,n逸3 and 1+ 4
d <p<1+ 4

d-2.

One can verify that (1) is essentially equivalent to the following Schr觟dinger鄄Hartree equation
i鄣tu+驻u=-( |·| 2-d伊 |u | p) |u | p-2u,摇 (t,x)沂R+伊Rd,
u(0,x)= u0(x)

{ .
(2)

Miao,Xu and Zhao[1] established global existence for solutions with finite energy in the case of d=6 and p=2.
Genev and Venkov[2] established the existence of solitary wave solutions and local existence with initial data.

In this paper,following Ibrahim,Masmoudi and Nakanishi爷s ideas[3],we characterize the ground state of in
terms of some constrained minimization problem,what爷s more,we obtain some blow鄄up criterion for the Schr觟dinger鄄
Hartree equation (2) .

Notation摇 Throughout this paper,we denote the Lebesgue Lq鄄space on Rd by Lq(Rd)with norm椰·椰q,1臆q<
肄 . We employ inhomogeneous Sobolev space H1(Rd),which is defined as H1(Rd)= {u沂L2(Rd):椰u椰2

H1 =
椰u椰2

2+椰塄u椰2
2<肄 } .

We write X刍Y to indicate X臆CY for some constant C>0. We use the notation X ~ Y whenever X刍Y刍X.
For 准沂H1(Rd),we denote the scaling function 准姿

d,-2 by 准姿
d,-2(x)= ed姿准(e2姿x),and the differential operator L

acting on any functional J:H1(Rd) | 寅R,by LJ(准)= d
d姿J(准

姿
d,-2) | 姿=0 . Then the scaling derivative of S(准) is
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defined by

K(准)= LS(准)= d
d姿S(准

姿
d,-2) | 姿=0 = 乙

Rd
(2 |塄准 | 2-dp-(d+2)p ( |·| 2-d伊 |准 | p) |准 | p) . (3)

Define
m=inf{S(准):准沂H1(Rd) \{0},K(准)= 0}, (4)

where

S(准)= 1
2 乙Rd

|塄准 | 2dx+ 1
2 乙Rd

|准 | 2dx- 1
2p 乙Rd

( |·| 2-d伊 |准 | p) |准 | p (5)

and K(准)is defined by (3) . Now,we are able to state the main result of this paper.

Theorem 1摇 For 1+ 4
d <p<1+ 4

d-2,and any initial data

u0沂撞:={f:f沂H1(Rd),xf沂L2(Rd)},
that satisfies(i)K(u0)<0,where K is defined by (3);(ii)S(u0)<m,where S is defined by (5) and m is defined
by (4) .

Then,there exists a finite time T沂(0,+肄 )such that lim
t寅T

椰塄u(t)椰2 =+肄 ,where u沂C([0,T),H1(Rd))is

the corresponding solution to the Cauchy problem (2) .

1摇 Preliminaries
1. 1摇 Some known results

For the Cauchy problem (2),Genev and Venkov[2] established the local existence of weak solution,see also [4].

Proposition 1摇 For 2p<1+ 4
d-2 and an initial data u0沂H1(Rd),there exists T沂(0,+肄 ]and a solution u沂C

([0,T),H1(Rd))of the Cauchy problem (2) . Furthermore,u is unique in C([0,T),H1(Rd)),
(i)either T=+肄 ,or else T<+肄 ,and lim

t寅T
椰塄u(t)椰2 =+肄 ;

(ii)u(t)satisfies the conservation of mass and energy,that is,for all t沂[0,T) .

M(u(t)) = 乙
Rd

| u(t) | 2dx = 乙
Rd

| u0 | 2dx,

E(u(t)) = 1
2 乙Rd

| 塄u(t) | 2dx - 1
2p乙Rd

( |·| 2-d 伊| u | p) | u | pdx.

Looking for standing wave solutions eit准(x) for the equation of (2) leads us to consider the stationary equation
-驻准+准=( |·| 2-d伊 |u | p) |u | p-2u,摇 x沂Rd . (6)

It is easily seen that 准 is a critical point of the functional (5) in H1(Rn) . Genev and Venkov[5] established
the existence of the ground state solution of (5) in terms of the minimizing problem

Cd,p = inf
准沂H1(Rd) \{0}

Jd,p(准), (7)

with Jd,p(准)=
椰准椰d+2-(d-2)p

2 椰塄准椰dp-(d+2)
2

乙
Rd
( |·| 2-d 伊| u | p) | u | p

.

For minimizing problem (7),it holds that

Cd,p = inf
准沂H1(Rd) \{0}

Jd,p(准)= 2p
d+2-(d-2)p

d+2-(d-2)p
dp-(d+2

æ

è
ç

ö

ø
÷

)

dp-(d+2)
2

椰Q椰2-2p
2 ,

where Q the unique positive radial ground state solution of (6) in H1(Rd) . The following lemma is useful in the
subsequent sections.

Lemma 1(Wely鄄Heisenberg inequality) [4,6] 摇 For any u沂H1(Rd),we have

椰u椰2
2臆

2
d 椰| x |u椰2椰塄u椰2 . (8)
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1. 2摇 The variational characterization of the ground state
Inspired and motived by[3],we give a new variational characterization of the ground state of (6) . Let us

decompose K 摇into the quadratic and the nonlinear parts K(准)= KQ(准)+KN(准),where

KQ(准)= 2 乙
Rd

|塄准 | 2,摇 KN(准)= -dp-(d+2)p 乙
Rd

( |·| 2-d伊 |准 | p) |准 | p .

For any 准沂H1(Rd) \{0},a direct calculation shows that

lim
姿寅-肄

KQ(准姿
d,-2)= lim

姿寅-肄
2 乙

Rd
|塄准姿

d,-2 | 2 = lim
姿寅-肄

2e4姿KQ(准)= 0. (9)

The following lemma shows that K is positive near 0 in the energy space.
Lemma 2摇 For any bounded sequence 准n 沂H1(Rd) \ {0}with lim

n寅+肄
KQ(准n) = 0,we have K(准n) >0, for

large n.
Proof摇 Since KQ(准n)tends to 0 as n tends to 0,we know that lim

n寅+肄
椰塄准椰2

2 =0. Then by Hardy鄄Littlewood鄄

Sobolev and Gagliardo鄄Nerenberg inequalities[7],we have for large n,

乙
Rd
乙
Rd

| x-y | 2-d |准n(y) | p |准n(x) | pdxdy刍椰准n椰
2p
2dp
d+2

椰塄准n椰dp-(d+2)
2 椰准n椰(d+2)-(d-2)p

2 =o(椰塄准n椰2
2),

where we use the boundedness of 椰准n椰2 and 1+ 4
d <p<1+ 4

d-2. Therefore,based the analysis above,we get

K(准n)= 2椰塄准n椰2
2-
dp-(d+2)

p 乙
Rd
乙
Rd

| x-y | 2-d |准n(y) | p |准n(x) | pdxdy ~椰塄准n椰2
2>0

for large n. This ends the proof.
Let us mention here two nonnegative numbers import for the following discussion:

軈滋=min{2dp-2(d+2),max{4,0}} =4, 滋=min{2dp-2(d+2),min{4,0}} =0.
The following lemma plays an important role in the succeeding argument.
Lemma 3

(軈滋-L)S(准)= 2椰准椰2
2-

(4+d)-dp
p 乙

Rd
( |·| 2-d伊 |u | p) |u | pdxdx,摇 摇 (10)

L(軈滋-L)S(准)= (2d+4-2dp)(d+4)-dpp 乙
Rd

( |·| 2-d伊 |准 | p) |准 | pdx. (11)

Proof摇 By the definition of L,we have
L椰塄准椰2

2 =4椰塄准椰2
2,摇 L椰准椰2

2 =0,

L 乙
Rd

( |·| 2-d伊 |准 | p) |准 | pdx=(2dp-2d-4) 乙
Rd

( |·| 2-d伊 |准 | p) |准 | pdx,

direct calculation implies that

(軈滋-L)S(准)= 2椰准椰2
2-

(4+d)-dp
p 乙

Rd
( |·| 2-d伊 |准 | p) |准pdx,

L(軈滋-L)S(准)= (2d+4-2dp)(d+4)-dpp 乙
Rd

( |·| 2-d伊 |准 | p) |准 | pdx.

This ends the proof.
Using Lemma 3,we are allowed to replace the functional S in (5) with a positive functional H,while extending

the minimizing region from“K(准)= 0冶to“K(准)臆0冶 . Let

H(准)= 1- L
軈

æ

è
ç

ö

ø
÷

滋 S(准), (12)

then for any 准沂H1(Rd) \{0},it follows that H(准)>0,LH(准)逸0. Now,we can rewrite the minimization problem
(4) by using H.

Lemma 4摇 For the minimization m in (4),we have
m=inf{H(准):准沂H1(Rd) \{0},K(准)臆0},

where H is defined by (12) and K is defined by (3) .
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Proof摇 For the convenience,we denote 軍m=inf{H(准):准沂H1(Rd) \{0},K(准)臆0} .
Firstly,for any 准沂H1(Rd) \{0} with K(准)= 0,we have H(准)= S(准),we deduce that

軍m=inf{H(准):准沂H1(Rd) \{0},K(准)= 0}逸inf{H(准):准沂H1(Rd) \{0},K(准)臆0} .
Hence,軍m逸m.
Finally,for any 准沂H1(Rd) \{0} with K(准)<0,by (9),Lemma 2 and the continuity of K in 姿,we deduce

that there exists a 姿0<0 such that
K(准姿0

d,-2)= 0,and S(准姿0
d,-2)= H(准姿0

d,-2)臆H(准0
d,-2)= H(准),

where we used LH(准)逸0 in the above inequality. Hence 軍m臆m.
After these preparations,we can now characterize the ground state of (6) through the minimizer of (4) .
Lemma 5摇 For the minimization m in (4),we have

m=S(Q),
where S is defined by (5) and Q is some radial ground state of (6) .

Proof摇 Let 准n沂H1(Rd)be a minimizing sequence for (2),i. e.
K(准n)臆0,准n屹0,H(准n)逸m,摇 lim

n寅+肄
H(准n)= m. (13)

Let 准*
n be the symmetric decreasing rearrangement of 准n . By the Riesz爷s rearrangement and Polya鄄Szeg觟 ine鄄

qualities[7],we have
K(准*

n )臆0,准n屹0,H(准n)逸H(准*
n )逸m,摇 lim

n寅+肄
H(准*

n )= m.

Therefore,replacing 准n by its symmetric decreasing rearrangement 鬃n,then using (13),we obtain that
K(鬃n)臆0,鬃n屹0,S(鬃n)= H(鬃n), lim

n寅+肄
S(鬃n)= m. (14)

Combing (13)with (5),we have

滋m+(2pd-2d-8)m饮滋H(鬃n)+(2dp-2d-8)S(鬃n)= 2椰鬃n椰2
2-
d+4-dp

p 乙
R5

( |·| 2-d伊 |鬃n | p) |鬃n | p+

(2dp-2d-8) 1
2 椰塄鬃n椰2

2 + 1
2 椰鬃n椰2

2 - 1
2p乙Rd

( |·| 2-d 伊| 鬃n | p) | 鬃n |[ ]p =

2椰鬃n椰2
2+(dp-d-4)椰鬃n椰2

H1(Rd),
which implies that 鬃n is bounded in H1(Rd) . Hence after extracting a subsequence(still denote by 鬃n),we have

鬃n圻鬃 weakly in H1(Rd),for some 鬃 in H1(Rd) .
By the radial symmetry,we have also

鬃n寅鬃 strongly in Lq(Rd),for all 2<q< 2d
d-2,

|鬃n | p寅|鬃 | p strongly in L
2d
d+2(Rd),

therefore,the well鄄known Hardy鄄Littlewood鄄Sobolev inequality[7] implies that

乙
Rd

( |·| 2-d伊 |鬃n | p) |鬃n | p寅 乙
Rd

( |·| 2-d伊 |鬃 | p) |鬃 | p,

it follows that K(鬃)臆0, and H(鬃)逸m.
However,we still need to verify 鬃屹0. In fact, if 鬃 = 0, then K (鬃n ) = 0 implies that lim

n寅+肄
KQ (鬃n ) =

- lim
n寅+肄

KN(鬃n)= 0,and by Lemma 2,we have K(鬃n)>0 for large n,which is a contradiction.

Using LH(准)逸0,we are allowed to replace 鬃 by its rescaling(still denote by 鬃),such that
K(鬃)= 0, S(鬃)= H(鬃)= m and 鬃屹0,

which implies that 鬃 is a minimizer of (4) and m =H(鬃)= S(鬃)>0. Hence,there exists a Lagrange multiplier
浊沂R such that S忆(鬃)= 浊K忆(鬃) .

Then using the chain rule,denoting we arrive at
0 =K(鬃)= LS(鬃)= <S忆(鬃),L鬃>=浊<K忆(鬃),L鬃>=浊L2S(鬃) .

Combing (11) with LS(鬃)= 0,it implies that
—63—
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L2S(鬃)= -(d+4-dp)(2d+4-2dp) 1
p 乙Rd

( |·| 2-d伊 |鬃 | p) |鬃 | p<0,

therefore 浊 = 0 and 鬃 is a solution of (6),what爷s more,鬃 is nonnegative and radial. Since every solution 渍 in
H1(Rd)of (6) satisfies

K(渍)= 掖S忆(渍),L渍业 =0.
This implies 鬃 is the ground state of (6) .
We conclude this section with the following lemma,which gives the uniform bounds on the scaling derivative

functional K with the functional S below the threshold m and plays an important role for the blow鄄up analysis.
Lemma 6摇 Let S be defined by (5),for any 准沂H1(Rd) with S(准)<m.
(i)If K(准)<0,then

K(准)臆-4(m-S(准));
(ii)If K(准)逸0,then

K(准)逸min 4(m-S(准)),2(dp-d-4)dp-d 椰塄准椰{ }22 ,

where K is defined by (3) .

Proof摇 Let s(姿)= S(准姿),n(姿)= 乙
Rd

( |·| 2-d伊 |准姿 | p) |准姿 | pdx,where 准姿 =准姿
d,-2 . By (11),we have

s义(姿)= 滋s忆(姿)- 1
p (d+4-dp)n忆(姿) . (15)

Case 1摇 If K(准)<0,then by Lemma 2 together with(9),there exists a real number 姿0<0 such that K(准姿0)=
0 and K(准姿)<0 for 姿0<姿臆0. By (15),we get

s义(姿)= 4s忆(姿)- 1
p (d+4-dp)n忆(姿)= 4s忆(姿)- 1

p (d+4-dp)(2d+4-2dp)n(姿)臆4s忆(姿) .

Integrating from 姿0 to 0,we get
K(准)= s忆(0)臆4[s(0)-s(姿0)] =4[S(准)-S(准姿0)]臆-4[m-S(准)] .

Case 2摇 K(准)逸0. We divide it into two sub cases:
When

2滋K(准)< 1
p (d+4-dp)(2d+4-2dp) 乙

Rd
( |·| 2-d伊 |准 | p) |准 | p,

applying (15),we have
s义(姿)<-滋s忆(姿) (16)

for 姿=0. On the other hand,n义(姿)= 1
p (d+4-dp)(2d+4-2dp)n(姿)>0,implies that the right hand side of (16)

is negative and decreasing as long as n忆>0. Hence,we have

s忆(姿)臆s忆(0)+ 乙姿
0
s义(τ)dτ臆s忆(0)+ 乙姿

0
[滋s忆(τ)- 1

p (n+4-np)n忆(τ)]dτ臆

s忆(0)+ 乙姿
0
[滋s忆(τ)- 1

p (n+4-np)n忆(τ)]dτ臆s忆(0)+[滋s忆(0)- 1
p (n+4-np)n忆(0)]姿

as long as n忆>0 holds. Hence (16) is preserved until 姿 reaches at some finite 姿0>0,i. e. there exists a finite 姿0>0
such that s忆(姿0)= 0. Now integrating (16) from 0 to 姿0,we have

0=K(准姿0)臆K(准)-4 乙姿0
0
s忆(τ)dτ=K(准)-4[S(准姿0)-S(准)],

this means
K(准)逸4(m-S(准)) .

When

2滋K(准)逸1
p (n+4-np)(2n+4-2np) 乙

Rd
( |·| 2-d伊 |准 | p) |准 | p,
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since
1
p (d+4-dp)(2d+4-2dp) 乙

Rd
( |·| 2-d伊 |准 | p) |准 | pdx=-4椰塄准椰2

2+2(4+d-dp)K(准),

then we have
2滋K(准)逸-4椰塄准椰2

2+2(4+d-dp)K(准),
which implies that

K(准)逸2(dp-d-4)
dp-d 椰塄准椰2

2 .

This finishes the proof.

2摇 Blow鄄up Threshold
In this section,we proof Theorem 1. To investigate the blow鄄up phenomena,we introduce the so鄄called "virial

identity" .

Lemma 7[4](Virial identity) 摇 For 1+ 4
d <p<1+ 4

d-2 and any initial u0沂撞={f:f沂H1(Rd), | x | f沂L2(Rd)},

there exists a unique maximal solution u沂C([0,T),撞) of (2) . Moreover,the first variance V(t)= 乙
Rd

| x | 2 |u(t,

x) | 2dx,belongs to C2([0,T),撞),and satisfies the virial identity
d2

dt2
V(t)= 16E(u)-4 d-d+4æ

è
ç

ö

ø
÷

p 乙
Rd

( |·| 2-d伊 |准 | p) |准 | p =4K(u) . (17)

Proof of Theorem 1摇 Let u0 satisfy K(u0)<0,S(u0)<m and u( t) be the solution of (2) with initial data
u0 . Since u(t) satisfies the conservation of mass and energy,we have u0 satisfy K(u0)<0,S(u0)<m and u( t) be
the solution of (2) with initial data u0 . Since u(t) satisfies the conservation of mass and energy,we have

E(u(t))= E(u0),摇 M(u(t))= M(u0),

S(u(t))= 1
2 E(u(t))+ 1

2 M(u(t))= 1
2 E(u0)+

1
2 M(u0)<m.

In addition,there exists 啄>0 such that
S(u(t))臆(1-啄)m.

Thus,by (17) and Lemma 7,we have
d2

dt2
V(t)= 4K(u(t))臆-4(m-S(u(t)))臆-4啄,

which implies that there exists a positive finite time T such that lim
t寅T

V( t)= 0. By Weyl鄄Heisenberg inequality (8)

and the conservation of mass,we have lim
t寅T

椰塄u(t)椰2
2 =+肄 and the proof is finished.
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