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Soliton-Antisoliton Solutions of a Supersymmetric

and Noncommutative Modified Chiral Model
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Abstract: We study a supersymmetric and noncommutative extension of the modified U (n) chiral model in 2+ 1
dimensions. A large family of multi-soliton solutions of this model were constructed by a super generalized dressing
approach. In this paper, we apply the same method to construct a class of soliton-antisoliton solutions of the super
extended model ,and present two explicit non-abelian U(2) soliton-antisoliton configurations.
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An N < 8 supersymmetric generalization of the noncommutative modified U (n)2+1 chiral model was
introduced by Lechtenfeld and Popov'"’. Since this model can be formulated as the compatibility conditions of a
linear system of differential equations involving a spectral parameter, a powerful solution-generating technique
called “dressing method” can be applied to construct multi-soliton solutions of the extended model as in the non-

1231 and also in the commutative setup'*”’.

supersymmetric case

Taking a dressing ansatz for the solution ¢ of the associated linear system with only first-order poles( which
are all complex numbers with imaginary part < Q) in the spectral parameter yields no-scattering soliton
configurations''’. By allowing for second-order poles in the dressing ansatz, two-soliton configurations with
nontrivial scattering were constructed'®’. These constructions can be viewed as just the supersymmetric
generalization of the noncommutative bosonic cases'>?’. A class of soliton-antisoliton solutions of the
noncommutative modified chiral model were constructed by making the dressing ansatz with a pair of conjugate
complex numbers poles'”’. Inspired by all of these constructions,we set out in this paper to construct soliton-
antisoliton solutions of the supersymmetric and noncommutative modified chiral model, and illustrate these

solutions are configurations with soliton and antisoliton interacting by discussing the scattering property of the

bosonic subsector of two explicit examples.
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The plan of the paper is as follows: We present the N <8 supersymmetric and noncommutative modified
U(n) chiral model in 2+1 dimensions and the linear system associated to it in Section 1. In Section 2, we first

" "I to the supersymmetric case and derive a

briefly review the dressing constructions'**") | then generalize the ones
class of soliton-antisoliton solutions of the super extended model. In Section 3 ,we construct explicit U(2) soliton-
antisoliton solutions and exhibit the scattering property of their bosonic subsector to show the solutions constructed

by us are configurations with genuine soliton-antisoliton interaction.

1 The Supersymmetric and Noncommutative Modified Chiral Model

An N<8 supersymmetric and noncommutative modified U(n) chiral model in 2+1 dimensions describes the
dynamics of a U(n)-valued superfield @(z,x,y,n") ,living on the antichiral superspace R*"" with coordinates
1

(t,x,y,m;) fora=1,2 and i=1,---,-N=<4 here 7; are called fermionic coordinates, which are Grassmann

variables'®' | so they obey the anticommutation rules
i +m;m; =0

for 1$i,j\LN. In particular, when i =j, we have (1%)*=0. Hence the degree of 1" in any function of the

2
Grassmann variables 7] is no more than 1 for «=1,2 and i=1, - ,%N$4.
Definition 1'''*  The U(n)-valued superfield @(1,x,y,n*) of the supersymmetric and noncommutative

modified chiral model satisfies the classical field equations
0, (D" %0 D)+ (D' %9 D)-3,(D' *9,D)+d (D' % 9,D) -3, (D' + 0 P)=0,
(D" 9 D) -0,(D" + 0,®)+3 (D" * 9,P)=0,
0,(D" % 0,D)+3\ (D' x 9 @) -0 (D * 0,P)=0,
(D" 9, D)+, (D" * 0,d)=0,

(D

and the unitarity condition
D s D= D=1, (2)
where o', := a/9m}, ‘1’ denotes hermitian conjugation.

The noncommutative star product on the antichiral superspace is defined by

o N i “— > ——> o
(fg) (ow,y,mi)=f(t,x,y,m ) expy50(0, 9,-9, 0, 1g(t,x,y,m7). (3)

Note that the time coordinate remains commutative and no derivatives with respect to the Grassmann variables ;.
The nonlocality of the star product renders explicit calculations cumbersome. It is therefore helpful to pass over to

the operator formalism, which trades the star product for operator-valued spatial coordinates (x,y) or their

complex combinations (z,z) ,subject to

[t,x]=[t,y]=0, [x,y]=i0=[z,2]=26. (4)
The later equation suggests the introduction of creation and annihilation operators,
a= ! z and o= ! z with [a,d']=1, (5)
/26 V26
which act on a harmonic-oscillator Fock space & with an orthonormal basis { 1€) ,£=0,1,2,---| such that

al€)=/C1€-1) and a'l€)=/C+11€+1). (6)
Any superfields f(¢,z,z,m%) on R*'" can be related to an operator-valued superfield f(¢,7%) =F(t,a,a’,n%)
on R'"™ acting in &, with the help of the Moyal-Weyl map
f(t,z,2,m°)—f(t,m%) = Weyl-ordered f(1, v20a, /204" ,n%). (7)
The inverse transformation recovers the ordinary superfield,
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z z

/26 /20

where F', is obtained from F by replacing ordinary products with star products. Under the Moyal-Weyl map,

JGmi)=F(t,a,a" ,nf)—f(1,2,2,m7)=F (¢, i) (8)

we have
f*g—7g, (9)
and the spatial derivatives are mapped into commutators,
Az_i N _}AAzL .
9 f—af m[a JS1 and  9f=0f m[aﬂ- (10)
Note that the product between / and g is the ordinary product. For notational simplicity we will from now on omit
the hats over the operators except when confusion may arise.
The model (1) is the compatibility condition for the following linear system of differential equations
involving a spectral parameter / € CU { oo | ")
(£0,-0,) P =Ad,
(£0,-9,) =B,
1

(gai_a;)'vb':clll” izl’”"?N’

(11)

where u=%(t+y) ,UZ%(I—}/) , ¥ depends on (t,x,y,n7,{) or equivalently on (x,u,v,n},{) ,and is an nxn

matrix whose elements act as operators in the Fock space &. The nxn matrices A ,B and C' are superfields on (t,

x,y,m") € R*" independent of the spectral parameter . Moreover 4 is subject to the following reality condition
W(,x,y,m O [,y i) 1" =1,. (12)
Then the superfield @ (t,x,y,n" )= (t,x,y,n%,0) " = ¢ ' (£=0) clearly satisfies the model (1) and the

unitarity condition (2).
2 Dressing Approach and Constructions for Soliton-Antisoliton Solutions

The dressing method is a recursive procedure for generating a new solution from an old one. We briefly

review the dressing construction. By the reality condition (12) ,the linear system (11) can be rewritten as
W(9,~{0)P'=A,
lrh(ax_é/av)lrh%:B’ (13>

P(9,-La) ' =C", izl,...%N

Given a seed solution ¢, of (13) ,we can look for a new solution ¢ in the form

lp(t,x,y,n?,5)2/\’(’5,95,9”77?,f)'a[’o(t,x’y’n?,f) (14)

with the dressing factor

X=IIL+ 2 i L

a=1k=1 (f—Mk)a’

where the u,(,x,y,m;) are complex functions and the nxn operator-valued matrices R, are independent of {. If

(15)

we take the seed solution ¢, =1 ,the dressing factor ¥ being restricted to containing only first-order poles in ¢ and

no

all the poles u, are complex constants with Imu, <0'") | then the dressing ansatz yields a multi-soliton solution

m

R,
G=I+ ,Z,’ T (16)

where R, are given via nxr operator-valued matrices T,.

The simplest case occurs when ¢ has only one pole at {=-i,s0 we drop the index £ and obtain

R 2
¢_I”+§+i_:l”_§+ip so that @=I -2P. (17)
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In this case all configurations are static and parametrized by a hermitian project P=T(T'T) ' T" which obeys

(1,-P)3.P=0 = (I,-P)aT=0,

_ 3 (18)
(I,-P)o,P=0 = (I,-P)d,T=0,
here we have used the abbreviations 5i; :%( 9% +id5) . Clearly, this can be solved by
T=T(:n)) with o'=nlsin}, =1, 2N, (19)

and the configurations are solitons when T depends on z rationally. The nxn matrix superfields A, B and C' are
expressed in terms of P as
A=-2i9 P, B=2id P, and C'=-2id\P. (20)
By taking the static configuration ¢ of (17)as a seed solution and considering a dressing factor y of the
same form as ¥, we have

Y= (1,

ﬁip)(1,1—5%P)=1”—%(P+P)—ﬁpp, (21)
where P is some matrix to be determined,which is also a hermitian projector by the reality condition (12) ,s0 we
can set P=T(T'T) ' T" with some nxr matrix T. Obviously, the ansatz for J,Nb contains a second —order pole.
Demanding that 4 is again a solution of the linear system (13) with some new superfields A, B and C', which are
independent of {,we obtain the following equations

(I,-P)(0.T+(0.P)T)=0,

(I,-P)(9,T-2i(d.P)T)=0, (22)

(I,-P) (%(ajﬂ‘ag)h(aipﬁ): 0.

After constructing a projector P via a solution T of (22) ,we obtain a solution !Nﬁ of the linear system (13) with a
double pole at { =—i,and hence a new superfield satisfying the model (1) with nontrivial scattering.
Now we set out to construct soliton-antisoliton solutions of the model (1). As in the non-supersymmetric

case'”)  we take the static configuration 4 of (17) as a seed solution and choose the dressing factor y =1+

;TLLP ,then

Y= (I, +%P) (I"—%P) , (23)

where P is also a hermitian projector by the reality condition (12) ,s0 we can set P=T(T'T)'T" with some nxr

matrix T. Since @ is again a solution of the linear system (13) with some new superfields A,B and C',we derive

A,y m™) = Bt x,y,m0) (8,-40,) [ (1,5, y,m*,0) ] = <1n+%i>> (A+(8,-3.)) <In—%i>> ,

B(t,x,y,m1)=¥(t,x,y,m7,0) (9,-£9,) [ (1,x,y,77,0) ]T:(In*'%i)) (B+(8x—§3v))(1n—%13) ,

(24)
2

Cl(t,x,y,m0) = (,x,y,m7,¢) (0,-¢0) [ (1,x,y,m7,0) 1" = (Lﬁéi’) (C'+(9,~¢9,)) (I,l—é%i’)-

The poles at ¢ =i on the right-hand side have to be removable since A ,B and C' are independent of {. Putting to
zero the corresponding residues,we obtain
(I,-P)(9.P-(0.P)P)=0,

(I,-P)(8,P-2i(9.P)P)=0, (25)

Dy L ai ainE i py ¥
(L,-P) (5(8,-i0,) P~(9,P)P)=0.
With the help of the identities
— 17 —
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(I,-P)P=0 and (I,-P)T=0, (26)
the equations (25) can be reduced to
(I,-P)(9.T-(8.P)T)=0,
(In_P)(azT_zi(aEP)T):O’ (27>
7 L, i ivs i py T
(In_P) (T(GI—LGZ)T—(E)IP)T): 0.

Using the operator formalism notations, (27) can be written in the form

(I -P)(a'T-[a" ,P]T)=0,

(I”-P)(a,T-iﬁ[a,P]T):o, (28)
(1.-P) (%(aj—ia;)T—( 5 PYT)=0.

Obviously, a sufficient condition for a solution is

a'T-[a" ,PIT=TZ,,

~ 12 ~ =
a[T—l g[(l,P]T:Tzz, (29)

(B0 T-(9,P) T=TZ,,
with some operator-valued superfields Z, (t,a,a’,n') for k=1,2,3. After constructing a projector P via a

solution T of the equations (29), we can obtain a solution ¥ of the linear system (13) and hence a new

superfield satisfying the model (1) ,which is a soliton-antisoliton solution by our ansatz.

3 Explicit Soliton-Antisoliton Solutions

In order to generate some explicit examples of nonabelian soliton-antisoliton solutions, we specialize to the
group U(2) and choose Z, =a',Z,=Z,=0,thus (29) is reduced to
[(L+,T:|—|:(IT,P:|T=0,

) _
a,T-i /;[a,P]T—O, (30)
%(aj—iaé)T—(ajP)T:O.

Moreover,we take as a seed configuration the simplest nontrivial solution of (18) ,that is,

1
P=T(T'T)'T" with T:L . j, (31)
(z,m")
where f depends on z rationally. Inspired by the known form of T in the non-supersymmetric case'’’ , we make
the ansatz
T=T +T(T'T)'g with Tiz[f(“’)J (32)
-1

being orthogonal to T,i. e. ,
T'"T =0 = PT, =0 and L-P=T (T, T, )'T , (33)
where g=g(t,z,z,m',m') is an operator-valued superfield to be determined.
Substituting our ansatz into the first equation of (30) ,we get [a',g]=0,which means that
g=g(t,z,m',m')
does not depend on z. From the second equation of (30) we obtain 8,g=—iﬁ[d,ﬂ ,which implies
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g==i |2 (lafloh(emm)).

From the third one we obtain 9, = - d,f, here we have used the abbreviations 9, := %( d)—i0y) ,thus g is

determined by

g=ni. |2 (Lafl+h(Gn)) g (34)

with an arbitrary function h(z,m") of z and 1'. Therefore ,we obtain an explicit solution

(7 1 -l |2 Vil i i

T=(f—1)+[/](1+ﬁ) (= |5 (tlasfl+h(z,m7)) -n'0,f) (35)
of the equations (30).

Depending on the explicit forms of f(z,n") and h(z,n") ,the solutions (35) describe different kinds of
soliton-antisoliton configurations. The scattering analysis of these supersymmetric configurations seems much more
complicated even when N=2 and we postpone it to future work. Here , we restrict ourselves only to a bosonic sub-
sector . For this purpose,we expand f(z,m') in ' and h(z,n') in 1’ respectively,

Fm ) =fo( D) +uf () 4 and h(zm)= ho(2) +hy(2) oo (36)

One choice is f,(z) = z,hy(z) = %;2 For large r* = zz, the corresponding bosonic subsector energy density

configuration has two lumps accelerating symmetrically towards each other along the x-axis, interacting at the
origin (near t=0)and decelerating to infinity along the y-axis. Thus a head-on collision of one soliton and one an-

tisoliton results a 90° angle scattering.
. - 1-5 . - . . . .
Another choice f,(z) =z, h,(z) = 723 yields, for large r* =zz,a configuration with one soliton and two

antisolitons , which come together( near : =0 ) forming a bell-like structure and then emerge at an angle of 60° with

respect to the original direction.
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