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A Projective Dynamic Method for Solving
Linear Programming
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(School of Science , Nanjing Audit University , Nanjing 211815, China)

Abstract: In this paper, we propose a projective dynamic method for minimizing general linear programming. The new
method is based on the variational inequality (V1) properties. We extend the variational inequality method to construct a
new ODE system. The preliminary numerical results are reported and the new dynamics is shown to be very useful to
solve large scale optimization problems.
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Consider a linear programming problem in canonical form as follows
(P) min c'x
s.t. Ax <b, (1)
x,>0,1=1,2,---,n.

where A is an mXn matrix, rank(A)=m and b, ¢ are vectors of length m and n respectively. For prob-

lem(1),we define the feasible set as

QO={xeR" Ax$b,x20}

and the optimal solution set as ), ={xeR'lx is an optimal solution of (1)}.
First,let us state some assumptions on the problem that we are interested in.
Assumption 1 (a) There exists relative—interior feasible points for problem(1).
(b) The set of optimal solutions of problem( 1) is nonempty and bounded.
(¢) The matrix A is full row rank and c is not in the range space of A" .
The above assumptions are standard in the literature.
The KKT condition for problem(1) can be written as follows

{xvlv(c +A'y)=0, x=0,c+A'y=0,

T (2)
y (FAx+b)=0, y=0,Ax<b.
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From Theorem 9.4.2 in Ref.[ 1], we know that x e (), is equivalent to finding x, y satisfying(2).

In the next section, we want to convert the linear programming into a variational inequality problem. We pro-

pose a continuous method based on variational method. The convergence of our method is given for any starting

point.

1

(4).

that

vector of the identity matrix /

Equivalent Variational Inequality Problem

Let us define
x c+A'y
= Fu)= =Mu+gq, 3
u (y), () (—Ax+b) u+tgq (3)
(0 A" _(¢
M (—A 0)’ 1 (b)

and the following linear variational inequality problem

VI(Q, M, ¢)) find a u” € Q such that (u - u") F(u)=0, Yue (), (4)

where

where

0= {u = (;j’x eR,, yeRT}.

Lemmal F(u) in(3) is monotone on ().
Proof It is similar to the proof of Lemma 2 in Liao’s paper[ 2 ].
Lemma 1 shows that(4) is a monotone variational inequality problem. Let " be the optimal solution set of
Then, we get another lemma.
Lemma 2 u satisfies(2) if and only if ue Q.
Proof Let u=(x",y")".
( = ) Since u satisfies(2),then ueQ and u' =(x",y") €Q ,we have

W —u)Fu)=u"Fu)-u'Fu)=u"F(u) (5)
From u' =0, F(u)=0 and(5),we get that

' —u) Fu)=0, Yu' Q.

The proof of the necessary part is completed.

(¢ ) Since ueQ’ ,then u=0. Let us set u'=0andu’=2u respectively, substitution into(4) , we obtain

u'Fw)<O0andu'F(u)=0.
This implies that u' F(u)=0.
Next,we prove that F(z)=0 by contradiction.
Suppose that there exists an ie{l,2,-:-,n} such that F,(u)<0. Let u'=u+e, where e, is the ith column
Then, we have
W' —u)Fu)=e Fu)=F(u)<O0.

This is a contradiction with we Q" . Therefore, u satisfies(2). This proves Lemma 2.

m+n *

The above lemmas show that finding an xe ), is equivalent to finding ue Q" , solving a monotone varia-

tional inequality problem.

2

Some Preliminaries of Projection and Variational Inequalities

The concept of the projection mapping is very fundamental in this paper. Without loss of generality , we regard

the dimension of ) as n . The solution of problem

min{“x—ymxeﬂ}
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is called the projection of ¥ onto () ,denoted by P (y). This can be also written as

P, (y)=arg min{”x -y|llxe Q}
A basic property of the projection mapping on a
closed convex set is that
(= Po() (& - Py(y)<0, VyeR, VxeQ. (6)

Fig.1 gives its geometric interpretation. Q

We show some basic properties of the projection map-

ping in the following Lemma. Fig.1 Geometric implementation of inequality (6)

Lemma3 Let QQCR" be a convex closed set,then we have

||Pﬂ(x)—Pﬂ(x)|| <||x—y , Vx,yeR" (7)
||Pn(y)—x||$||x—y , VyeR' xeQ. (8)
1Po) -5 <|[s=y| - |ly-Pan)||. VyeR.xecq. (9)

Some other properties about the VI(Q), M, q) are presented in[3]. From the early work of Eaves[4], we

know that solving a variational inequality VI({), M, q) is equivalent to the following projection equation

u=P,lu—(Mu+q)] (10)
In other words, to solve VI(Q), M, F) is equivalent to finding a zero point of the residual function
ew):=u-Pylu-Fu)|, Fu)=Mu+q. (11)

Theorem 1“°" Let Q) be a nonempty closed convex subset of R" and 8>0. Then u is a solution of
VI(Q, M, q) if and only if e(u’, B)=0, where e(m’,B):=u —P,u —BFu)], Flu)=Mu +q.
From Theorem 1 and the continuity of e(u) ,we see that ||e(u)|| can measure how much u fails to be in ",

Let u € be a solution. For any ueR", Py[u—Fw)]e. It follows from(4) that

(F1) F@)'{Py[u-F@)]-u}=0, YueR" (12)
Setting y=u—F(u) and x=u"in(6),we get that
(F2) {e@w) - F)} {Pyu-F@)]-u}=0, YueR" (13)
Adding(12) and(13) ,we have
{e(w) = (F(u)- F(u*))}T{(u ~u’)-e()| =0, YueR". (14)

For F(u)=Mu+q , M is positive semidefinite , we have the following theorem.
Theorem 2 Forall u" Q" and ueR" ,so we get

@-u)'dw=ew|’, YueR', (15)

where
d(w)=(I + M")e(u) (16)
In the next section, we use this search direction d(z) and a merit function to propose a projective dynamics.
1.4 Projective Dynamic Method
Now , we propose our continuous method for solving the problem(4) ,which consists of a merit function and a

ODE system. In our continuous method , the merit function is

-1 “II?
E("')_EHH_"'”' (17)
The projective dynamics
dul) _
5 = ), (18)

where
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e

dw) =T+ M)e(w), a(w)=——=—.
(| (7 + MM )ew))

(19)

1.5 Convergence Analysis of Our Continuous Method
In this section, we will give the convergence properties for(18).
Theorem 3 For any u,eR""" ,there is a solution u(t) of (18),with u(0)=u, and wu(t) defined in [0, =].

Proof It follows from Assumption 1 that there is a finite £ € (), so there is a finite u” € Q, then
2

dB@) _ g dfu-u

i > i =—a(u)(w—-u’) du), (20)

by using Theorem 2, we get that
2

d” u—u
—
(21) shows that u(r) EB(uo,u*): _ {u cR"™

=2aw)(u-u) du)< —2a(u)|| e(u)”2 <0. (21)

||u— u*” $||uO —u*”}. Since the set B(uy,u’) is a closed bound-

ed set, then the right-hand side function of (18) is bounded and continuous. The result is obtained by using the
Cauchy—Peano theorem.
Next, let us prove the convergence result.

Theorem 4 For any u,eR""", let u(f) be a solution of (18) with u(0)=u,. Then, ’lirpwu(t) exists and
lim u(t)=ne Q.

Proof From Theorem 2,we have that
2

dE@ _ g dju-u’
&t 2 dt

From the LaSalle invariant—set theorem , we have that

tlirpwe(u(t)) =0. (22)

=—aw)(w-u)'du) <0, Yi=0.

In the proof of Theorem 3, we get that u(t)€ B(u,,u) ,which is a compact set.
Therefore , there is a sequence t, — +% as k— +% ,so u(t,) has alimit @, denoted as
limu(t,) = .
Using formula(22) , we get
e(@)=0.
From Theorem 1,we have that
e@)=0 ac).
By replacing u~ by @ in(21),we get that
2
dfu-a|]” _ o 2
4 - 2a(u)w-u) du)< —Za(u)”e(u)” <0.
This formula and klirywu(t) =i imply
ZLirpaolz(lt) =1i.
The proof of the theorem is completed.
Remark 1 We present a new continuous method based on variational inequalities for linear programming

problems. The complete convergence results of our continuous method are obtained. Numerical result given in

section 2 demonstrates that our method is effective.

3 Numerical Experiments

In this part, we present some numerical results of our projective dynamic method. All our experiments are

carried out on a computer with a Dell Pentium (R) CPU 3.40GHz and 2GB RAM on the MATLAB (2007b) plat-
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form. We give some small examples to verify the efficiency of our methods and show the trajectories of our meth-

od approaching optimal solutions. The problems are described as the following linear programming problems

Example 1
min —4x, — 3x,
s.. X, +x,+x, =40,
2%, +x, +x, =60,

%,=0, i=1,273.4.

Let us consider the equivalent linear program as follows

min —4x, - 3x,

s.t. x, +x, <40,
2%, +x, <60,
x;=0, 1=1,2.

Let

aefl ) oo ()= ()

The linear programming problem is equivalent to a linear variational inequality problem. We use the denota-

¢ @’M (—A 0)"’ b)
Q= {uz (;)‘xelﬁ, yeRi}.

The optimal solution of this problem is

u'=(20,20,2,1)", x"=(20,20)"

tions as follows

and

Two feasible starting points
u, = (20, 10, 10, 10)',
u, = (15, 15, 10, 15)",
are used in the test. We use projective dynamic method to solve this problem. In our experiment, we take the
starting points u, in Fig.2 and in Fig.3. In Fig.2 and 3, we describe the trajectories of x,,%,,y,,y,,¢ # and E(w) ,
respectively.
From Figs. 2 and 3, we clearly see that x, converges to 20 and x, converges to 20. The merit function
E(u) converges to zero as t tends larger and larger. Numerical results show that projective dynamic method can

generate the optimal solution to linear programming.

150 X 200 -
X, X,
100 ¥ - 150 =N
— N -0
T T
- 'x 100 k - e'x
50 - E(u) - E)
= 50 L
0
0
=50
=50 +
-100 i -100 E
_150 1 1 1 1 | — l 50 1 1 1 1 ]
0 200 400 600 800 1000 0 200 400 600 800 1 000
Fig.2 Transient behaviors of x, %,, ¥, ¥,, ¢'x and E(u) in Fig.3 Transient behaviors of x, x,, y,, y,, ¢'x and E(u)in
Example 1 with starting point u, Example 1 with starting point ',
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Consider a linear programming example used in[ 6,7 Jas following

Example 2
min —4x, - x,
s.t. X, =X, <2,
x, +2x, <8,
x,=0, 1=1,2.
Let

ieft )=o)

The optimal solution of this problem is x =(4,2)", the minimal objective value is ¢'x =-18. We test this
problem by projective dynamic method.

The linear programming problem is equivalent to a linear variational inequality problem. We use the denota-

L=l 5ol

Q:{u:(;ijRi, yeRf}.

T
The optimal solution of this problem is u” = (4,2, 7 5) .

tions as follows

and

33
Two feasible starting points u, = zeros(4, 1) and u,” = 3*ones(4, 1) are used in the test.
15¢
— X, — X
X, -5+ X,
0 Ly = —
' -10 - —y
= z ) cix
-10+ - c'x -15
b - E(u
el - E(u) N . E®
15 wema - : =20 ! ! ! ! ! )
- . . . . . . . . ) 0 10 20 30 40 50 60
0 10 20 30 40 50 60 70 80 90 X,
Fig.4 Transient behaviors of x,, %,, ¥,, ¥,, ¢ ¥ and E(u)in Fig.5 Transient behaviors of x,, x,, ¥,, ¥,, ¢ ¥ and E(u)in
Example 2 with starting point ', Example 2 with starting point ',
25 r 30 —
20 - 281
150 2.6
o £ 24
1.0 -
22 —_
L —
0.5 = 20 T
/‘/_‘-"‘- | 1 1 1 1 1 1 | 1.8 | | | 1 1 1 J
0 05 1.0 15 20 25 3.035 40 45 28 3.0 32 34 36 38 40 42
X, X
Fig.6 Transient behaviors of x,, x, in Example 2 Fig.7 Transient behaviors of «x,, x, in Example 2
with starting point u, with starting point «’,

In Fig. 4 and 5, we describe the trajectories of x,, x,, y,, ¥,, ¢ x and E(u) , respectively. From Fig. 4,5,6
and 7, we clearly see that x, converges to 4 and x, converges to 2. The merit function E(u) decreases monotoni-

cally as t tends larger and larger. Numerical results show that projective dynamic method can generate the opti-

mal solution to linear programming.
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4 Conclusion

In this paper, a projective dynamics is proposed for minimizing general linear programming. The new meth-

od is based on the variational inequality properties. We extend the variational inequality method to construct a

new ODE system. The new dynamic will be very useful to solve large scale optimization problems.
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