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Abstract：In this paper，we propose a projective dynamic method for minimizing general linear programming. The new
method is based on the variational inequality（VI）properties. We extend the variational inequality method to construct a
new ODE system. The preliminary numerical results are reported and the new dynamics is shown to be very useful to
solve large scale optimization problems.
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一种求解线性规划的投影动态方法

孙黎明

（南京审计学院理学院，江苏 南京 211815）

［摘要］ 提出了一种求解线性规划问题的投影动态方法 . 新方法是基于变分不等式的理论和性质而提出的 . 将
变分不等式的方法进行推导并构建了一个新的ODE系统 . 论文给出了初步的试验结果，表明了算法的有效性 .
新方法将用于解决大规模的优化问题 .
［关键词］ 线性规划，连续性方法，变分不等式，投影动态方法

Consider a linear programming problem in canonical form as follows
(P) min cTx

s.t. Ax≤ b,
xi > 0, i = 1,2,…,n.

（1）

where A is an m × n matrix，rank(A) =m and b, c are vectors of length m and n respectively. For prob⁃
lem（1），we define the feasible set as

Ω0 ={ }x ∈ Rn| Ax≤ b, x≥ 0
and the optimal solution set as Ω*

0 ={x∈Rn|x is an optimal solution of（1）}.
First，let us state some assumptions on the problem that we are interested in.
Assumption 1 （a）There exists relative-interior feasible points for problem（1）.
（b）The set of optimal solutions of problem（1）is nonempty and bounded.
（c）The matrix A is full row rank and c is not in the range space of AT .
The above assumptions are standard in the literature.
The KKT condition for problem（1）can be written as follows

ì
í
î

xT(c + ATy) = 0, x≥ 0, c + ATy≥ 0,
yT(-Ax + b) = 0, y≥ 0, Ax≤ b. （2）
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From Theorem 9.4.2 in Ref.［1］，we know that x ∈Ω*
0 is equivalent to finding x, y satisfying（2）.

In the next section，we want to convert the linear programming into a variational inequality problem. We pro⁃
pose a continuous method based on variational method. The convergence of our method is given for any starting
point.
1 Equivalent Variational Inequality Problem

Let us define
u = æ

è
ç

ö
ø
÷

x
y

, F(u) = æ
è
ç

ö
ø
÷

c + ATy
-Ax + b =Mu + q ， （3）

where
M = æ

è
ç

ö
ø
÷

0 AT

-A 0
, q = æ

è
ö
ø

c
b

.
and the following linear variational inequality problem

(VI(Ω, M, q)) find a u* ∈ Ω such that (u - u*)TF(u) ≥ 0, ∀u ∈Ω, （4）
where

Ω ={ }u = æ
è
ç

ö
ø
÷

x
y | x ∈ R+

n, y ∈ Rm
+ .

Lemma 1 F(u) in（3）is monotone on Ω.
Proof It is similar to the proof of Lemma 2 in Liao’s paper［2］.
Lemma 1 shows that（4）is a monotone variational inequality problem. Let Ω* be the optimal solution set of

（4）. Then，we get another lemma.
Lemma 2 u satisfies（2）if and only if u ∈Ω* .
Proof Let u = (xT, yT)T.
（⇒）Since u satisfies（2），then u ∈Ω and u′ =(xT, yT)T ∈Ω ，we have

(u′ - u)TF(u) = u′TF(u) - uTF(u) = u′TF(u) （5）
From u′ ≥ 0, F(u) ≥ 0 and（5），we get that

(u′ - u)TF(u) ≥ 0, ∀u′ ∈ Ω.
The proof of the necessary part is completed.
（⇐）Since u ∈Ω* ，then u≥ 0. Let us set u′ = 0 and u′ = 2u respectively，substitution into（4），we obtain

that
uTF(u) ≤ 0 and uTF(u) ≥ 0.

This implies that uTF(u) = 0 .
Next，we prove that F(u) ≥ 0 by contradiction.
Suppose that there exists an i ∈ { }1,2,⋯,n such that Fi(u) < 0. Let u′ = u + ei, where ei is the ith column

vector of the identity matrix Im + n . Then，we have
(u′ - u)TF(u) = eT

i F(u) =Fi(u) < 0.
This is a contradiction with u ∈Ω* . Therefore，u satisfies（2）. This proves Lemma 2.
The above lemmas show that finding an x ∈Ω0

* is equivalent to finding u ∈Ω* ，solving a monotone varia⁃
tional inequality problem.
2 Some Preliminaries of Projection and Variational Inequalities

The concept of the projection mapping is very fundamental in this paper. Without loss of generality，we regard
the dimension of Ω as n . The solution of problem

min{ } x - y | x ∈Ω
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is called the projection of y onto Ω ，denoted by PΩ(y) . This can be also written as
PΩ(y) = arg min{ } x - y | x ∈Ω .

A basic property of the projection mapping on a
closed convex set is that

(y -PΩ(y))T (x -PΩ(y) ≤ 0, ∀y ∈ Rn, ∀x ∈Ω. （6）
Fig.1 gives its geometric interpretation.
We show some basic properties of the projection map⁃

ping in the following Lemma.
Lemma 3 Let Ω⊂ Rn be a convex closed set，then we have

 PΩ(x) -PΩ(x) ≤  x - y , ∀x,y ∈ Rn. （7）
 PΩ(y)- x ≤  x - y , ∀y ∈ Rn, x ∈Ω. （8）

 PΩ(y)- x 2 ≤  x - y 2 -  y -PΩ(y) 2, ∀y ∈ Rn, x ∈Ω. （9）
Some other properties about the VI(Ω, M, q) are presented in［3］. From the early work of Eaves［4］，we

know that solving a variational inequality VI(Ω, M, q) is equivalent to the following projection equation
u =PΩ[u -(Mu + q)]. （10）

In other words，to solve VI(Ω, M, F) is equivalent to finding a zero point of the residual function
e(u): = u -PΩ[u -F(u)], F(u) =Mu + q. （11）

Theorem 1［4，5］ Let Ω be a nonempty closed convex subset of Rn and β > 0 . Then u* is a solution of
VI(Ω, M, q) if and only if e(u*, β) = 0, where e(u*, β): = u* -PΩ[u* - βF(u*)], F(u*) =Mu* + q.

From Theorem 1 and the continuity of e(u)，we see that  e(u) can measure how much u fails to be in Ω* .
Let u* ∈ Ω* be a solution. For any u ∈ Rn, PΩ[ ]u -F(u) ∈ Ω. It follows from（4）that

( )F1 F(u*)T{ }PΩ[u -F(u)] - u* ≥ 0, ∀u ∈ Rn. （12）
Setting y = u -F(u) and x = u* in（6），we get that

( )F2 { }e(u) -F(u) T{ }PΩ[ ]u -F(u) - u* ≥ 0, ∀u ∈ Rn. （13）
Adding（12）and（13），we have

{ }e(u) -(F(u) -F(u*)) T{ }(u - u*) - e(u) ≥ 0, ∀u ∈ Rn. （14）
For F(u) =Mu + q ，M is positive semidefinite，we have the following theorem.
Theorem 2 For all u* ∈Ω* and u ∈ Rn ，so we get

(u - u*)Td(u) ≥  e(u) 2, ∀u ∈ Rn, （15）
where

d(u) =(I +M T)e(u) （16）
In the next section，we use this search direction d(u) and a merit function to propose a projective dynamics.

1.4 Projective Dynamic Method
Now，we propose our continuous method for solving the problem（4），which consists of a merit function and a

ODE system. In our continuous method，the merit function is
E(u) = 12 u - u* 2. （17）

The projective dynamics
du(t)
dt = -α(u)d(u), （18）

where

Fig.1 Geometric implementation of inequality（6）
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d(u) =(I +M T)e(u), α(u) =  e(u) 2

 (I +M T)e(u) 2 . （19）

1.5 Convergence Analysis of Our Continuous Method
In this section，we will give the convergence properties for（18）.
Theorem 3 For any u0 ∈ Rm + n ，there is a solution u(t) of（18），with u(0) = u0 and u(t) defined in [ ]0, ∞ .
Proof It follows from Assumption 1 that there is a finite x* ∈ Ω*

0, so there is a finite u* ∈ Ω*, then
dE(u)
dt = 12

d u - u* 2

dt = -α(u)(u - u*)Td(u), （20）
by using Theorem 2，we get that

d u - u* 2

dt = -2α(u)(u - u*)Td(u) ≤ -2α(u) e(u) 2 ≤ 0. （21）
（21）shows that u(t) ∈ B(u0,u*): ={ }u ∈ Rn +m| u - u* ≤  u0 - u* . Since the set B(u0,u*) is a closed bound⁃

ed set，then the right-hand side function of（18）is bounded and continuous. The result is obtained by using the
Cauchy-Peano theorem.

Next，let us prove the convergence result.
Theorem 4 For any u0 ∈ Rm + n, let u(t) be a solution of（18）with u(0) = u0. Then，lim

t→+∞u(t) exists and
lim
t→+∞u(t) = ū ∈Ω*.

Proof From Theorem 2，we have that
dE(u)
dt = 12

d u - u* 2

dt = -α(u)(u - u*)Td(u) ≤ 0, ∀t≥ 0.
From the LaSalle invariant-set theorem，we have that

lim
t→+∞e(u(t)) = 0. （22）

In the proof of Theorem 3，we get that u(t) ∈ B(u0,u*)，which is a compact set.
Therefore，there is a sequence tk →+∞ as k→+∞ ，so u(tk) has a limit ū, denoted as

lim
k→∞u(tk) = ū.

Using formula（22），we get
e(ū) = 0 .

From Theorem 1，we have that
e(ū) = 0 ⇔ ū ∈Ω*.

By replacing u* by ū in（21），we get that
d u - ū 2

dt = -2α(u)(u - ū)Td(u) ≤ -2α(u) e(u) 2 ≤ 0.
This formula and lim

k→+∞u(t) = ū imply
lim
t→+∞u(t) = ū.

The proof of the theorem is completed.
Remark 1 We present a new continuous method based on variational inequalities for linear programming

problems. The complete convergence results of our continuous method are obtained. Numerical result given in
section 2 demonstrates that our method is effective.
3 Numerical Experiments

In this part，we present some numerical results of our projective dynamic method. All our experiments are
carried out on a computer with a Dell Pentium（R）CPU 3.40GHz and 2GB RAM on the MATLAB（2007b）plat⁃
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form. We give some small examples to verify the efficiency of our methods and show the trajectories of our meth⁃
od approaching optimal solutions. The problems are described as the following linear programming problems

Example 1
min -4x1 - 3x2
s.t. x1 +x2 + x3 = 40,

2x1 +x2 + x4 = 60,
xi ≥ 0, i = 1,2,3,4.

Let us consider the equivalent linear program as follows
min -4x1 - 3x2
s.t. x1 + x2 ≤ 40,

2x1 + x2 ≤ 60,
xi ≥ 0, i = 1,2.

Let
A = æ

è
ö
ø

1 12 1 , b = æ
è

ö
ø

4060 and c = æ
è

ö
ø

-4-3 .
The linear programming problem is equivalent to a linear variational inequality problem. We use the denota⁃

tions as follows
u = æ

è
ç

ö
ø
÷

x
y

, M = æ
è
ç

ö
ø
÷

0 AT

-A 0 , q = æ
è
ö
ø

c
b

,
and

Ω ={ }u = æ
è
ç

ö
ø
÷

x
y | x ∈ R2

+, y ∈ R2
+ .

The optimal solution of this problem is
u* =(20, 20, 2, 1)T, x* = ( )20, 20 T.

Two feasible starting points
u0 = ( )20, 10, 10, 10 T,
u0

′ = ( )15, 15, 10, 15 T,
are used in the test. We use projective dynamic method to solve this problem. In our experiment，we take the
starting points u0 in Fig.2 and in Fig.3. In Fig.2 and 3，we describe the trajectories of x1,x2,y1,y2,cTx and E(u)，
respectively.

From Figs. 2 and 3，we clearly see that x1 converges to 20 and x2 converges to 20. The merit function
E(u) converges to zero as t tends larger and larger. Numerical results show that projective dynamic method can
generate the optimal solution to linear programming.

Fig.2 Transient behaviors of x1, x2, y1, y2, cTx and E(u) in

Example 1 with starting point u0

Fig.3 Transient behaviors of x1, x2, y1, y2, cTx and E(u) in

Example 1 with starting point u′0
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Consider a linear programming example used in［6，7］as following
Example 2

min -4x1 - x2
s.t. x1 - x2 ≤ 2,

x1 + 2x2 ≤ 8,
xi ≥ 0, i = 1,2.

Let
A = æ

è
ö
ø

1 -11 2 , b = æ
è
ö
ø

28 and c = ( )-4-1 .
The optimal solution of this problem is x* =(4, 2)T, the minimal objective value is cTx* = -18. We test this

problem by projective dynamic method.
The linear programming problem is equivalent to a linear variational inequality problem. We use the denota⁃

tions as follows
u = æ

è
ç

ö
ø
÷

x
y

, M = æ
è
ç

ö
ø
÷

0 AT
-A 0

, q = æ
è
ö
ø

c
b

,
and

Ω ={ }u = æ
è
ç

ö
ø
÷

x
y | x ∈ R2

+, y ∈ R2
+ .

The optimal solution of this problem is u* = æ
è

ö
ø

4,2, 73，53
T.

Two feasible starting points u0 = zeros(4,1) and u0′ = 3*ones(4, 1) are used in the test.

Fig.4 Transient behaviors of x1, x2, y1, y2, cTx and E(u) in

Example 2 with starting point u′0

Fig.5 Transient behaviors of x1, x2, y1, y2, cTx and E(u) in

Example 2 with starting point u′0

Fig.6 Transient behaviors of x1, x2 in Example 2
with starting point u0

Fig.7 Transient behaviors of x1, x2 in Example 2
with starting point u′0

In Fig. 4 and 5，we describe the trajectories of x1, x2, y1, y2, cTx and E(u) ，respectively. From Fig. 4，5，6
and 7，we clearly see that x1 converges to 4 and x2 converges to 2. The merit function E(u) decreases monotoni⁃
cally as t tends larger and larger. Numerical results show that projective dynamic method can generate the opti⁃
mal solution to linear programming.
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4 Conclusion

In this paper，a projective dynamics is proposed for minimizing general linear programming. The new meth⁃
od is based on the variational inequality properties. We extend the variational inequality method to construct a
new ODE system. The new dynamic will be very useful to solve large scale optimization problems.

［参考文献］

［1］ FLETCHER R. Practical methods of optimization［M］. 2nd ed. New York：John Wiley and Sons，1987.
［2］ LIAO L Z. A continuous method for convex programming problems［J］. J Optim Theory and Appl，2005（124）：207-226.
［3］ HE B S. A modified projection and contraction method for a class of linear complementarity problems［J］. J Comput Math，

1996（14）：54-63.
［4］ EAVES B C. On the basic theorem of complementarity［J］. Math Programming，1971（1）：68-75.
［5］ HARKER P T，PANG J S. A damped-Newton method for the linear complementarity problem［M］//Computational Solution

of Nonlinear Systems of Equations：Lectures in Applied Mathematics. USA：American Mathematical Society，1990：265-284.
［6］ CICHOCKI A，UNBEHAUEN R. Neural networks for optimization and signal processing［M］. London，UK：Wiley，1993.
［7］ HAN Q M，LIAO L Z，QI H D，et al. Stability analysis of gradient-based neural networks for optimization problems［J］. J Global

Optim，2001（19）：363-381.

［责任编辑：黄 敏］

（上接第13页）

-- 35


