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Backward Bifurcation in an Epidemic Model
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Abstract: In this paper,we formulate a SIVS epidemic model with special recovery rate to study the impact of limited
medical resource on the transmission dynamics of diseases with vaccination. The basic investigation of the model has been
finished. The backward bifurcation has been proved precisely. It is shown that limited medical resource leads to vital
dynamics,such as bistability. Backward bifurcation implies that even if the basic reproduction number is smaller than
unity , there may be a stable endemic equilibrium and the basic reproductive number itself is not enough to describe
whether a disease will prevail or not and we should pay more attention to the initial conditions. It is also shown that suffi-
cient medical services and medicines are very important for the disease control and eradication. Besides, the impact of
vaccination has been explored too.
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Recently, attention has been given to vaccination and treatment policies in terms of the different vaccine
classes, efficacy , treatment resource and associated costs( [ 1-12] ,etc.).

In[2],Kribs-Zaleta et al. introduced a vaccination compartment with temporarily immune state and set up a
SIV model with general incidence rate. Their analysis indicated that when the vaccine for all population is not to-
tally effective,the basic reproduction number R, is no longer a threshold for the spread of diseases and the model
will exhibit multiple endemic states. In[ 9] ,Shan and Zhu took the per capita recovery rate as a function of the
number of hospital beds. Their analysis indicated that the system could undergo backward bifurcation, saddle-
node bifurcation, Hopf bifurcation and cusp type of Bogdanov-Takens bifurcation within different conditions. In
[11],Xiao and Tang analyzed a SIV epidemic model with nonlinear incidence rate. The main result shows that
the system undergoes forward bifurcation with hysteresis except for the backward bifurcation. Besides, Erika et al.

([7])studied the dynamics of a SIR epidemic model with nonlinear incidence rate , vertical transmission vaccina-
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tion for the newborns and the capacity of treatment, that takes into account the limitedness of the medical re-
sources and the efficiency of the supply of available medical resources. Under some conditions,they proved that
the existence of backward bifurcation, the stability and the direction of Hopf bifurcation. They also explored how
the mechanism of backward bifurcation affects the control of the infectious disease.

In order to consider the impact of limited medical resources and vaccination on the transmission dynamics of
infection diseases more precisely, we formulate a SIVS epidemic model with human population demography and
vaccinated individuals.

The organizations of this paper are as follow. Firstly,we will introduce our SIVS model in section 2. In sec-
tion 3,we will analyze the existence of equilibria. Stability of equilibria and backward bifurcation analysis will be

given in Section 4. Some discussion will be given in Section 5.
1 Model

We classify the population in a given region/area into three categories : susceptible , infective and vaccinated.
Let S(t),I(t)and V(t)denote the number of susceptible ,infective , vaccinated individuals at time ¢, respectively.

Based on standard SIS model with the incidence of mass action,we can construct a model

ds
E ZA—BSI—QDS‘F/,L( b ,I) I1+6V-dS .
d/
£=,BSI+,80'VI—,U,(b,I)I—dI, (1)
dv
—=@S-BaVI-6V-dV,
de
with initial data S(0) =0,7/(0) =0,V(0) =0, Table 1 Parameters involved in the model
S(0)+1(0)+V(0) <A/d, where all parameters Description Parameter
listed in Table 1 are positive. Recruitment rate A
. . . . Contact transmission rat
In classical epidemic models,the per capita re- ) (fn e rdnbmlbmn, rd e, o A
The vaccination rate of susceptible individuals @
covery rate is assumed to be a constant. Neverthe- The per capita natural death rate d
less,in general ,the recovery rate depends on the re- The rate at which the vaccination wears off 0
. . Th apita recovery rat
sources of the health system available to the public, o ¢ per capiia fecovery rdle H
The efficiency of the vaccine,0=completely effective,1=useless 0<o<1

particularly the capacity of the hospital settings and
efficiency of the treatment. There are many factors determining the recovery rate. The significant factor is the

number of the hospital beds and medicines are another significant factors which are essential for safe and effective

. : : : b .
prevention , diagnosis and treatment of illness. We take the per capita recovery rate as u=u,+(u, —t,) —— which

b+I
is used in[ 9]. Therefore,the recovery rate in a unit time w/ is a that can describe the impact of limited medical
resource.
It is not difficult to prove the following theorem
Theorem 1 With an initial value condition in( 1) ,there is a unique solution,and the solution remains pos-
itive and bounded for any finite time ¢=0.

Therefore ,Model ( 1) is mathematically well-defined and biologically reasonable.
dN
Summing up the system( 1) ,then E:A_dN' So N(t)tends to A/d as t increases to infinity. Therefore ,we
can reduce the size of the model by letting S=A/d—I-V. Now the model becomes

dl/ A

o :B[d—I—Vj]+ﬁo’Vl—M(b,1)]—dI,

oo (2)
Y ol BV | -BaVI-0V-dV.
. gp(d Vj BoVI-0V-dV
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2 Existence of Equilibria
Let the right-hand side of (2)to be zero. One can verify that the model (2 ) has one disease free equilibrium

A
at E,= O,(Pi . The local stability of E, can be obtained through a straightforward calculation for the ei-
d(d+e+0)

genvalues.
It follows from ([ 13 ] ) that for the compartmental models , the local stability of the disease-free equilibrium is
governed by the reproduction number of the model. If we use the notation in([13]) ,then we have
F:(ﬁ(A/d—I—V)I+ﬂ0'VIj V:( u(b,I)+dl j
0 ’ oBVI+OV+dV-p(A/d-1-V) )
The infected compartment is ,hence a straightforward calculation gives

_ ([ BA(O+d+op) ~ _
F(E,)= (d(u1+d)(¢+0+d)j , Vv(E))=(u,+d),

and

- BA(O0+d+o¢
e ‘(d<ul+d><¢+e+d>j'

Hence the reproduction number is given by p(FV™") | and

_ BA(O+d+op)
O d(ul+d) (e+0+d)”

Remark 1 According to a straightforward calculation, R, is a monotone decreasing function with respect to

the vaccination rate ¢.

Let the right hand side of (2) be zero,then the endemic equilibrium E (1, V) satisfies

o(A-Id)
V()=——""— (3)
d(d+0+p+oBI)
and I must satisfy the following equation ;
F(I)=B*cdl’+BI’+CI+D, (4)

where
B=-B[Bo(A-bd)—-d(0+d+op+u,o+do) |,
C=-B’Aob+aB+d(uy+d) (p+0+d) ,a=-A(d+0+0¢) +db(O+d+op+u,o+do) +abd (u,—,) ,
D=bd(d+u,) (d+6+¢) (1-R,).

Because it is complicated to discuss the root of function F(I) ,we will study the number of the root from the

geometry.
Let the right-hand side of (2)be zero,then
f)=g(l), (5)
where
o(A=dl)

AD= d(d+0+p+oBI)’

Blz+(ﬁb+d_%+ﬂo YI+b(p, +d_ﬁjA)

B(b+I) (o-1)

g()=

One can easily verify that

BA

A
pul+d—— A+, g+b,U«1+bd

,B(b+3] (o-1)

A
- d(d+0+p)

A
B(O'—l) ’g(g)z

f(0) <0,

A
SC=0,(0)=
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and
f([):—qo[d(d+0+¢)+a,8/1]<0
d(d+6+p+oBI)*? ’
(D)= 208¢[ d(d+0+¢p) +0BA |
d(d+6+p+oBl)’ ’
| _ BIP+2BbI+b(Bby ) (6)
T e (o)
=2b (y—t,
(1) Mo =H4, )

= v <0
B(b+I)’(o-1)
Therefore,f (1) is a monotonous decreasing concave function whereas g (/) is a convex function on the

interval[ 0,A/d]. Besides,

A A
it dLE oABr=1) d(d+0v9) (uy+dE0)

_ oA d _ _
f(o)_g(o)_d(d+6+¢>) B(o-1) Bd(o-1) (d+6+9)
BA(d+0+0d) ~d(d+0+d) (u,+d) d(d+0+d) (u,+d) (Ry~1)
Bd(o—1) (d+6+¢d)  Bd(o-1)(d+6+d) (7)

which implies that
f(0)<g(0)  Ry>1,
f(0)=g(0) Ry=1, (8)
f(0)>g(0) Ry<l1.
Now we can discuss the number of the equilibrium points in three cases.

(1)If Ry>1,then f(0)<g(0),and g(A/d) <0 always exists. Thus there is only one positive intersection
which gives one endemic equilibrium( See Fig. 1(a)).

(2)If Ry=1,then f(0)=g(0) ,and g(A/d) <0 always exists. Thus f(/)and g(/)will intersect one point if
and only if £°(0)<g°(0) (See Fig. 1(b)).

(3)If Ry<1,then f(0)>g(0),and g(A/d)0 always exists. Thus f( /) and g (/) will intersect with each

i (d) R,<1
(©) R, <1

— ) ----y=gW)

Fig.1 The existence of endemic equilibria
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other at two points which gives two endemic equilibrium if and only if /' (0) <g’(0)and there exists I such that
f(I)<g(T) ;The two points coalesce with each other if f(1)=g(1)and £ (1)=g' (1) (See Fig. 1(¢) (d)).

As a result,we have the following theorem

Theorem 2 For the system(2).

(1) The disease-free equilibrium £, always exists.

(2)If R,>1,there exists only one endemic equilibrium E,(1,,V,).

(3)If R,=1,there exists one endemic equilibrium if and only if g”(0)>f"(0). Otherwise, there is no en-
demic equilibrium.

(4)If Ry<1,there exist two endemic equilibrium E,(/,,V,)and E,(1,,V,)if and only if /" (0)<g'(0) and
there exists 1 such that f(1) <g(1) ,the two equilibria will coalesce if f(1)=g(1)and f'(I)=g'(1).

Fix parameters A=1,d=0.1,8=0.2,60=0.1,0=0.4,6=0.1,4,=0.2,¢0=0.5,R,=2,1,0.2,0.047 respec-
tively ,we will get the Fig. 1,respectively.

3 Stability of the Equilibria

Firstly ,we will discuss stability of the disease-free equilibrium.

The Jacobian matrix of system(2)

J(E)= [B(A/d—ZI—V) +aBV—-u(b, 1) =mw(b,1)-d  —Bl+aBl J (9)
—p-aBV -p-oBl-0-d
So we will get
(pl+d) (R=1) 0
J(E,)= oBpA (10)

P v
Y d(or0rd) 7

we have the following theorem ;

Theorem 3 When R,<1,E, is locally asymptotically stable ;when R,>1,E, is unstable;when R,=1,E is
a saddle-node.

Proof One can verify that system at K, has an eigenvalue, — (@ +60+d) <0. The other eigenvalue is
(u,+d) (R,—1)<0. The result from the fact that(w,+d) (R,—1)<0 is equivalent to R,<1 and(u,+d) (R,—1)>0
is equivalent to R,>1. Hence, E is locally asymptotically stable if R <1 and E is unstable if R,>1. Besides, ob-
viously E, is a Lyapunov singularity when R;=1. A straightforward calculation gives that one eigenvalue of Jaco-

bian matrix of system at E, is zero when R, =1, the other is —(@+60+d). The transformation I'=1,V' =V+
oA

brings E, to the origin. Then the system in a neighborhood of the origin becomes

d(p+6+d)
Olllt:ﬁ(;‘—l'—vud(;i/;d)j I/+BO-I(V,+(I(Q:5-/6‘H-(i)j —u(b, 1) =dI’ -
dd‘: :go(iil—l’—v’—d(q:i/;d)j ~(aBl'+6+d) (V’ +d(g:j—;l-l-d)j .
Simplifying the system,we will get
% :3(3—1'—1/') 1'+A;(B;fgjd))l ,+a-,81’ V- (b, 1) I'=dI’ -
ddtl =p(~I'-V") —d‘(ri 1990/:; B IOV =aV
Linearizing the above system and still substituting /=1",V=V'. By straightforward calculating,we get
%lef(l V) .
%: (—go—d(ofji/_‘d)jl—(go+0+d) Vio(1,V)
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where
2w —
p(1,V)= [-zg+(“‘b“(’)Jﬁ+z( —B+ap) IV,
o(1,V)==20BIV
Let the right-hand side of the second equation be zero. According to implicit function,one can obtain a func-
tion for V in terms of I. Suppose V(I)= a,I+a,I’+O(I’)with V(0)= 0. Substituting V(1) into ¢s(1,V),
d/ d/ ( oA

20, Sr0(P)= | ~p-— 2222
@ “ (1)=1-¢ d(p+0+d)

= j]—(¢+a+d) V-20B1V, (14)

a, [(—2,3+2(Mb_“0)]12+2( “B+apB)[(a,1+a,1*+0(I") )}

2a2]|:(_2,8+2('u1b_ﬂo)][2+2(—B+0’,8)](a11+a212+0(]3) )}:

oA
(—go—d(weﬂi)j I-(@+0+d) (a,I+a,’+0(1)*) -20BI(a,I+a,+O(T’)). (15)
. . : ¢ o’ pA
Comparing the coefficients of the same powers gives that a, = 5 Thus,
(¢+0+d) d(p+6+d)
- o eA ] )
V()= I1+0(TI 16
= (<¢+9+d> dgrora)?) O o)
and
2(y =49 - o oA
1,V)=(-2B+——)FP+2(—B+aB)1 1+0(%) |]=
§1= (280 P prapy ] [ e B o) |
2(py =) - oA 2 3
-2B+———)+2( B+ r+o(ry). 17
[ g I 2 (e [ = P o) (17)
Clearly ,m =2 which implies that £, is half saddle node. Let
2(p—m,) - UBZQDA
C=| -2B+——+2(-B+ ,
[ o b (-Brap) (@+6+d) d(¢+0+d)2j
Then, E, is left saddle and right node if C<0 while E is right saddle and left node if C>O0.
In the following,we will discuss the stability of the endemic equilibrium E~(1",V").
The Jacobian matrix of the model(2)at E(I™,V")gives
_ —y ) bl _
) —31+(“‘$)2 Bl(o-1)
J(E)= (b+I) (18)
—p-aBV —(@+6+d) —oBI
and the corresponding characteristic equation is given by
A =tr(I)A+det(1)=0, (19)
where
- -H(I
w(ny= 10
(b+I)?
H(I)=B(o+1)F+[2b(Bo+B) +@+0+d | P +b[ b(B+0B) +2(@+0+d) +uy—u, | 1+b°(e+6+d) ,  (20)
L IF(I
det(])= ( 7) .
d(b+I)

Obviously, F'(I)and H(I)determine the eigenvalues of the matrix J(E™ ). It is easy to know F’(1,) >0,
F'(1,)<0. So E,(1,V)is a hyperbolic saddle and is always unstable ,and E,(/,V)is a anti-saddle. Furthermore ,
it H(I)>0,E,(1,V)is locally asymptotically stable;If H(1)=0,E,(I,V)is a weak focus or center;If H(I)<O0,
E,(1,V)is a unstable node or focus. Thus we have the following theorem.
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Theorem 4 When R;>1, the system exists unique endemic equilibrium and it’s an anti-saddle; when
R,<1,and the two endemic equilibria exist, £, (/,V)is always unstable, E,(/,V)is locally asymptotically stable if
H(I)>0 and unstable if H(I) <0.

Lemma 1 (Theorem 3 in[ 14]) Assume

af.(0,0
A:A=Df(0,0)= [fl(a)) is the linearization matrix of system around the equilibrium O with ¢

X .
J
evaluated at 0. Zero is a simple eigenvalue of A and all other eigenvalues of A have negative real parts;
A, :Matrix A has a nonnegative right eigenvector w and a left eigenvector v corresponding to the zero eigen-
value.

Let f, be the kth component of f/ and

2 2
a= 2 U w;w; 76 fan(g;jO) ,b= 2 uw, 76 J:;;L(;;DO) , (21)

The local dynamics of system around O are totally determined by a and b.

(1)a>0,b>0. When ¢<0 with 1¢|<1. 0 is locally asymptotically stable. and there exists a positive unsta-
ble equilibrium ;when 0<¢@<<1,0 is unstable and there exists a negative and locally asymptotically stable equilib-
rium;

(2)a<0,b<0. When ¢<0 with |@|<1. 0 is unstable ; When 0<¢<<1,0 is locally asymptotically stable ,and
there exists a positive unstable equilibrium.

(3)a>0,b<0. When ¢<0 with 1¢|<1. 0 is unstable ; When 0<¢<<1,0 is stable,and there exists a locally
asymptotically stable negative equilibrium,and a positive unstable equilibrium appears.

(4)a<0,b>0. When ¢<0 changes from negative to positive,0 changes its stability from stable to unstable.
Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically stable.
) (d6)°

Bl deo(o+6+d) +aBpA+d(p+0+d)* ]

Theorem 5 When R =1,b

,the system will undergo backward bifur-

cation.

—  PA(d+6+op)
Proof Let u, —7{1( 1+0+0)

To apply Lemma 1,we essentially have to compute two quantities,labeled . and .%, which depend on the

—d. Then R,=1 if and only if u, =u,.

higher order terms in the Taylor expansion of system,and require, for their computation,a change of coordinates
involving the right and left eigenvectors of the Jacobian J( E,) associated with the eigenvalue A =0. we will ex-
press 7 and .%,in terms of parameters. The right and left eigenvectors of the Jacobian J(E,) are
- oBpA
wel1,—f TR ) (),
o+t0+d d(p+0+d)

respectively. In order to follow the notations introduced in Theorem 3 of[ 18], we let x,=1,x,=V and ¢ =u,—u,.

Then the Taylor expansion system are represented by the f;(x,¢),(i=1,2) ,and we have

azfl(0,0)_ 2(:“1_/*0)
T—(_ZB"'T),
2£(0,0
W:Z(—BWB),
(22)
asz(O’O)_
0x, 0x, o ’
¥£(0,0) = BA(d+0+0p)
v, 0 O d(d+0+p) (d+u,)’

All other derivatives equal to zero. Consequently, we can readily compute the following quantity
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37£,(0,0) 2 (=g A
=S w00 [—2[3+(Mb'u))+2( B+ffl3)( P ____ o j=2(—3+a/3><f<0>—

0o, 0, (p+6+d) d(p+6+d)>
(0,0) A (d+0+ 9£,(0,0)
g'(0)). Note that ————— &l =1-R,+ pAC 7¢) and all other derivative fki equal to zero. so we
9, 0 d(d+6+¢) (d+u,) i
can calculate .% by substituting the vector v and w and the respective partial derivatives into the expression 8=
9’/,(0,0) BA(d+6+0¢)
Z u,w,; =1-Ry+ .
dx,;0¢ d(d+0+¢) (d+u,)

So we conclude that when Ry;=1 and f°(0)<g"(0),A>0 and B>0, which is the defining condition for a
backward bifurcation[ 14].

4 Discussion

In this paper,we formulate a SIVS epidemic model with special recovery rate to study the impact of limited
medical resource on the transmission dynamics of diseases with vaccination.

In Model(2) ,the disease-free equilibrium always exists which is locally asymptotically stable if R,<1 and
unstable if Ry>1. There is a unique endemic equilibrium if R;>1. Furthermore,on the one hand,if the medical
resource in a given region is not sufficient enough , according to Theorem 5,backward bifurcation will occur and
there are at most two endemic equilibria even if R,<1. One(E,)is a hyperbolic saddle and the other(E,)is a an-
ti-saddle. Furthermore, £, is a stable anti-saddle if H(/)>0. Backward bifurcation implies that the basic repro-
ductive number itself is not enough to describe whether the disease will prevail or not and we should pay more at-
tention to the initial value. On the other hand,if the medical resource is not less than the threshold value of b de-
scribed in Theorem 5, R can act as a critical value and one just need to control R, less than unity in order to con-
trol a disease. It is also shown that sufficient medical services and medicines are very important for the disease
control and eradication.

According to Remark 1,the basic reproduction number is monotone decreasing function with respect to the
vaccination rate ¢ ,which implies that vaccination may help to control a disease, especially if the medical resource
is not sufficient. By vaccination,one can decrease the basic reproduction number to small enough value to guaran-

tee there is no endemic equilibrium.
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