June, 2018

doi:10.3969/j.issn.1001-4616.2018.02.005

关于 τ-刚性模的注记

谢宗真.张孝金

(南京信息工程大学数学与统计学院,江苏 南京 210044)

[摘要] 给定一个本原不可分解的代数 Λ ,如果 Λ 的所有的 τ -刚性模都是投射模,则它是局部代数. 对于任意一个本原的不可分解代数 Γ ,内射模 $D\Gamma$ 是 τ -刚性模当且仅当 Γ 的自内射维数小于或等于 1,其中 D 为通常的对偶. [关键词] τ -刚性模,内射模,内射维数,局部代数

「中图分类号]0154.2 「文献标志码]A 「文章编号]1001-4616(2018)02-0023-03

A Note on τ -Rigid Modules

Xie Zongzhen, Zhang Xiaojin

(School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China)

Abstract: For a basic indecomposable finite dimensional algebra Λ , if all τ -rigid Λ -modules are projective, then Λ is local. For any basic indecomposable finite dimensional algebra Γ , then the injective module $D\Gamma$ is τ -rigid if and only if the injective dimension of Γ is at most one, where D is the usual duality.

Key words: \tau-rigid module, injective module, injective dimension, local algebra

20 世纪 80 年代, Auslander 和 Smalo 研究了有限维代数上的 τ -刚性模. 最近 Adachi, Iyama 和 Reiten 从 mutation 的角度推广了经典的倾斜理论并引入了 τ -倾斜理论 $^{[1]}$. 而这套理论的重要工具和研究对象是 τ -倾斜模. 因此研究一个代数上的 τ -倾斜模是非常有意义的. 注意到任何一个 τ -倾斜模都是一些不可分解的 τ -刚性模的直和, 因此研究代数的 τ -刚性模是非常重要的. 关于 τ -倾斜模和 τ -刚性模最新的结果, 可参见文献[2-8].

局部代数 Λ 具有唯一的 τ -倾斜模.即 Λ 所有的 τ -刚性模都是投射的.则有

问题 1 如果一个本原的不可分解的有限维代数 Λ 上的所有的 τ -刚性模都是投射的,那么 Λ 是不是局部代数呢?

在[8]中已经证明了所有 τ-刚性模都是投射模的根平方为零本原的不可分解的代数是局部代数. 本文我们将完全解决以上问题并证明如下定理:

定理 1 设 Λ 是一个本原的不可分解的有限维代数. 如果 Λ 的所有的 τ -刚性模都是投射模,则 Λ 是局部代数.

另一方面,研究了投射模的 τ -刚性性质后,考虑内射模与 τ -刚性模的联系. 注意到遗传代数 Λ 的内射模 $D\Lambda$ 都是 τ -刚性的,则有

问题 2 是否存在更多的代数 Λ 满足内射模 $D\Lambda$ 是 τ -刚性的呢?

在下文中将给出这个问题的完全解答,首先证明如下定理:

定理 2 设 Γ 是本原的不可分解的有限维代数, $D\Gamma$ 是 τ -刚性模当且仅当 $id_{\tau}\Gamma \leq 1$.

下文由两部分组成. 第一部分介绍基本定义并证明一个本原的不可分解的有限维代数 Λ 上的所有的 τ -刚性模都是投射的,且 Λ 为局部代数. 第二部分证明本原的不可分解的有限维代数 Γ 的内射模 $D\Gamma$ 是 τ -刚性模当且仅当 Γ 的自内射维数小于等于 1,然后给出例子说明存在一类代数 Γ 满足其所有的不可分解内射模是 τ -刚

收稿日期:2017-05-30.

基金项目:国家自然科学基金青年基金(11101217,11401488)、江苏省自然科学基金青年基金(BK20130983).

通讯联系人: 张孝金, 博士, 副教授, 研究方向: 代数表示论. E-mail: xiaojinzhang@sohu.com

性模但 $D\Gamma$ 不是 τ -刚性模. 特别地,本文所有的代数 Λ 都是代数闭域 K 上的本原的不可分解的有限维代数. 所有的模都是有限生成右模. 记 $\operatorname{mod} \Lambda$ 为有限生成右 Λ -模范畴. $D=Hom_{\varepsilon}(-,K)$ 表示通常的对偶.

1 局部性

设 Λ 是一个代数目T是一个有限生成的右 Λ -模. 我们有:

定义 $\mathbf{1}^{[1]}$ (a) T 称为 τ -刚性的如果 $Hom_{\Lambda}(T,\tau T)=0$. 其中, τ 是 Auslander-Reiten 变换函子.

- (b) T 称为 τ -倾斜模如果 T 是 τ -刚性的并且 T 的互不同构的不可分解直和项个数与代数 Λ 的互不同构不可分解直和项的个数相同.
 - (c) T 称为 support τ -倾斜模如果存在一个幂等元 e 使得 T 是一个 τ -倾斜 $\Lambda/\langle e\rangle$ 模.
 - (d)(T,P)称为 support τ -倾斜对如果 T 是 τ -刚性的, $Hom_{\Lambda}(P,T)=0$ 且 $|T|+|P|=|\Lambda|$.

注记1 由 AR-公式易知 T 是 τ -刚性模可以推出 $Ext_{\Lambda}^{1}(T,T)=0$.

定义 $\mathbf{2}^{[1]}$ Λ 的两个本原 support τ -倾斜对(T,P)和(T',P')互相称为 mutations,如果存在本原几乎完备 support τ -倾斜对(U,Q)是(T,P)和(T',P')的直和. 我们记(T',P')= $\mu x(T,P)$ 或简单的记做 T'= $\mu x(T)$ 如果 X 是不可分解 Λ 模满足 T=U($\mathbb{R} \times \mathbb{R} \times \mathbb$

记 Fac U为 U的有限直和项的商模范畴. 我们有:

定义 $\mathbf{3}^{[1]}$ 令 $T=X\oplus U$ 且 T'是 support τ -倾斜模,使得对于一些不可分解的 Λ 模 X 有 $T'=\mu x(T)$. 当 T>T'或 T<T'成立时,称 T'是 T 的左 mutation(右 mutation),记 $T'=\mu^-x(T)$ ($T'=\mu^+x(T)$).如果满足 $X\notin Fac\ U(X\in Fac\ U)$.

定义 $\mathbf{4}^{[1]}$ 对于 $M \in \text{mod } \Lambda$. 如果任一个单 Λ -模都是 M 的一个合成因子. 则称 M 为亲切模.

引理 $\mathbf{1}^{[1]}$ 令 $T = X \oplus U$ 是本原 τ -倾斜模,其中 U 是 Bongartz 补,X 不可分解. 取 $X \xrightarrow{f} U' \xrightarrow{g} Y \to 0$ 为正合列,其中 f 是极小左逼近. 则有

- (a)如果 U 不是亲切模,则 Y=0. 此时 $U=\mu^{-}x(T)$ 成立且是一个本原的 support τ -倾斜 Λ 模而不是 τ -倾斜模.
- (b) 如果 U 是亲切模,则 Y 是不可分解 Λ 模 Y_1 的直和且不在 add T 中. 此时 $Y_1 \oplus U = \mu^- x(T)$ 成立且是一个本原 τ -倾斜 Λ 模.

定理 3 设 Λ 是一个本原的不可分解的有限维代数. 如果 Λ 的所有的 τ -刚性模都是投射模,则 Λ 是局部代数.

证明 不妨设

$$\Lambda = P_1 \oplus P_2 \oplus \cdots \oplus P_n, \quad n \ge 1.$$

式中, $P_i \not\cong P_i$,其中 $i \neq j$.

下证 n=1.

反证法. 假设 n 大于 1.

由于 Λ 是本原的,则 $\forall P_i \notin \text{Fac } P_1 \oplus \cdots \oplus P_{i-1} \oplus P_{i+1} \oplus \cdots \oplus P_n$ 对于任意的 $1 \leq i \leq n$ 成立.

又注意到 Λ 是一个 support τ -倾斜模,由定义3以及引理1可知存在正合列

$$P_i \xrightarrow{f} P' \rightarrow \text{Coker } f \rightarrow 0$$
,

其中, $P' \in \text{add } P \perp f \neq P' \in \text{Add} (\Lambda \setminus P_i)$ -逼近.

再由引理 1 可知 P_i \oplus Coker f 是 support τ -倾斜模. 由定义 1 可知 Coker f 是 τ -刚性模. 由命题条件可知所有的 τ -刚性模都是投射模,从而 Coker f 是投射模,得可裂正合列

$$0 \rightarrow \text{lm } f \rightarrow P' \rightarrow \text{Coker } f \rightarrow 0.$$

从而可得 $P' \cong \text{lm } f \oplus \text{Coker } f$,由 lm f 是投射模可知 $P_i \to \text{lm } f$ 是满射,所以 $P_i \cong \text{lm } f$. 因此 $P_i \leqslant P'$,与 $\forall P_i \notin \text{Fac } P_1 \oplus \cdots \oplus P_{i-1} \oplus P_{i+1} \oplus \cdots \oplus P_n$ 矛盾.

所以假设不成立,因此代数 Λ 一定是个局部代数.

2 τ-刚性模与内射模

本节中,我们要考虑一个代数 Γ 的 τ -刚性模与内射模之间的联系,并给出 $D\Gamma$ 是 τ -刚性模的充分必一 24 一

要条件.

下面介绍忠实模的定义:

定义 $\mathbf{5}^{[9]}$ 对于 $M \in \text{mod } \Gamma$, 如果它的零化子为零,则称 M 为忠实模.

引理 $2^{[9]}$ 对于 $M \in \text{mod } \Gamma$,以下几个条件等价

- $(a)M_r$ 为忠实的.
- (b) Γ_{Γ} 是由 M 上生成的.
- $(c)(D\Gamma)_{\Gamma}$ 是由 M 生成的.

引理3^[1] 任意的倾斜 Γ -模恰好是忠实的 support τ -倾斜 Γ -模.

引理 $\mathbf{4}^{[1]}$ (1)对于任意的 Γ 模 X 和 Y, $Hom_{\Gamma}(X, \tau Y) = 0$ 当且仅当

$$Ext_{\Gamma}^{1}(Y, Fac\ X) = 0.$$

(2) X 是 τ -刚性模当且仅当 $Ext_{\Gamma}^{1}(X, Fac\ X) = 0$.

下面我们给出本节的主要结果:

定理 4 设 Γ 是本原的不可分解的有限维代数, $D\Gamma$ 是 τ -刚性模当且仅当 $id_{\tau}\Gamma \leq 1$.

证明 必要性 由命题可知 $D\Gamma$ 是 τ -刚性模. 由引理 2 可知 $D\Gamma$ 是忠实的. 由引理 3 可知 $D\Gamma$ 是倾斜模. 利用倾斜模的定义,可得 $pd_{\Gamma}D\Gamma \leq 1$. 从而 $id_{\Gamma^{op}}\Gamma \leq 1$. 注意到自内射维数小于等于 1 的代数是左右对称的,因此 $id_{\Gamma}\Gamma \leq 1$.

充分性 由定义 1 和引理 4 可知, $D\Gamma$ 是 τ -刚性模的充分必要条件是 $Ext^1_{\Gamma}(D\Gamma, Fac\ D\Gamma) = 0$,其中 $Fac\ D\Gamma = \{M \mid \exists n \in \mathbb{Z},$ 使得 $(D\Gamma)^n \to M$ 为满射 $\}$. 取 $\forall M \in Fac\ D\Gamma$ 有正合列

$$0 \rightarrow N \rightarrow D\Gamma^n \rightarrow M \rightarrow 0. \tag{1}$$

将 $Hom_r(D\Gamma, -)$ 作用于正合列(1)得

$$0 \longrightarrow Hom_{\Gamma}(D\Gamma, N) \longrightarrow Hom_{\Gamma}(D\Gamma, D\Gamma^{n}) \longrightarrow Hom_{\Gamma}(D\Gamma, M) \longrightarrow Ext_{\Gamma}^{1}(D\Gamma, N)$$

$$\longrightarrow Ext_{\Gamma}^{1}(D\Gamma, D\Gamma^{n}) \longrightarrow Ext_{\Gamma}^{1}(D\Gamma, M) \longrightarrow Ext_{\Gamma}^{2}(D\Gamma, N) \longrightarrow Ext_{\Gamma}^{2}(D\Gamma, D\Gamma^{n}) \longrightarrow \cdots$$

由 $D\Gamma$ 是内射 Γ -模知 $Ext^1_{\Gamma}(D\Gamma, M) \cong Ext^2_{\Gamma}(D\Gamma, N)$. 又由 $id_{\Gamma}\Gamma \leqslant 1$ 知 $pd_{\Gamma}D\Gamma \leqslant 1$,从而 $Ext^1_{\Gamma}(D\Gamma, M) \cong Ext^2_{\Gamma}(D\Gamma, N) = 0$,有 $Ext^1_{\Gamma}(D\Gamma, Fac\ D\Gamma) = 0$,所以 $D\Gamma$ 是 τ -刚性模.

下面举例说明存在代数 Γ 满足所有的不可分解内射模是 τ -刚性模,但 $D\Gamma$ 不是 τ -刚性模.

例1 设
$$Q$$
 为箭图 $1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} 3$,其中 $I = R : \alpha_1 \alpha_2 = 0$,令 $\Gamma = \frac{KQ}{I}$.则

- $(1)\Gamma$ 的整体维数是 2.
- (2)I(2) = P(1), I(3) = P(2), I(1) = S(1)都是 τ -刚性模.
- (3) $D\Gamma$ 不是 τ-刚性模.

「参考文献]

- [1] ADACHI T, IYAMA O, REITEN I. τ-tilting theory[J]. Composito mathematica, 2014, 150(3):415-452.
- [2] MIZUNO Y. Classifying τ-tilting modules over preprojective algebras of Dynkin type [J]. Mathematische zeitschrift, 2014, 277(3):665-690.
- [3] WEI J Q. τ-tilting theory and *-modules[J]. Journal of algebra, 2014, 414:1-5.
- [4] DEMONET L, IYAMA O, JASSO G. τ-tilting finite algebras and g-vectors [J]. ArXiv:1503.00285.
- [5] HUANG Z Y, ZHANG Y Y. G-stable support τ-tilting modules [J]. Frontiers of mathematics in China, 2016, 11(4):1057-1077.
- [6] IYAMA O, JORGENSEN P, YANG D. Intermediate co-t-structures, two-term silting objects, τ-tilting modules and torsion classes [J]. Algebra and number theory, 2014, 8(10):2413–2431.
- [7] JASSO G. Reduction of τ-tilting modules and torsion pairs [J]. International mathematics, 2015, 16;7190-7237.
- [8] 谢宗真, 张孝金. 所有 t-刚性模是投射模的代数[J]. 山东大学学报(理学版), 2016, 51(2): 16-20.
- [9] ASSEM I, SIMSON D, SKOWRONSKI A. Elements of the representation theory of associative algebras [M]. 北京:世界图书 出版公司北京公司,2011:193.

「责任编辑:陈 庆]