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Abstract : This paper is concerned with a stability problem in R for a non-isentropic Euler-Maxwell system without tem-
perature diffusion term. When the initial data are close to the steady states of the system,we show the global existence of
smooth solutions which converge toward the steady states as the time tends to infinity. The basic idea is to make a change
of unknown variables and choose a non-diagonal symmetrizer of the full Euler equations to get the dissipation estimates.
In addition, an induction argument on the order of derivatives of solutions in energy estimates plays a key role in obtaining
the stability result.
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1 Introduction and Main Results

This paper concerns the global stability of smooth solutions to the Cauchy problem for a non-isentropic Euler-
Maxwell system which describe the dynamics of electrons for plasmas. Let n,u=(u, ,u,,u;) ' p,0 be the densi-
ty ,the velocity ,the pressure and the absolute temperature of the electrons, respectively. The total energy £ is de-

fined by
1
E=?n lul?+n8.

We denote by E=(E, ,E, E;)" and B=(B,,B,,B;)" the electric and magnetic fields of the plasma. The
system satisfied by these variables reads(see [ 1-2])
d,n+div(nu)=0,
d,(nu)+div(nu®u)+Vp=-n(E+uxB)-nu,
d,E+div(Eu+pu)u- VO=-nu-E-(E-nb,) , (1)
d,E—V XB=nu,div E=b(x)-n,
49,B+V xXE=0,div B=0.
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for t=0 and x=(x, ,x,,%;) € R’ ,where 6,>0 is a constant,b(x)is the ion density,and —n( E+uxB) stands for
the Lorentz force. We remark that b can be large in our stability result and here b is sufficiently smooth with b=
const.>0 in R’. The system is complemented by the following initial conditions
t=0:(n,u,0,E,B)= (n,(x),u,(x),0,(x),E)(x),By(x)), xeR"’. (2)
We assume that
div E,=b(x)-n,,div B,=0. (3)
Then in(1)the constraint equations
div E=b(x)-n,div B=0.
hold for all time ¢>0.
For convenience,we consider the case of ideal polytropic gas
p=nb. (4)

By state equation(4) ,for smooth solutions with n>0,the momentum and energy equations in(1)can be written as

0
du+(u-V)Yu+r—Vn+Vo=—(E+uxB)-u, (5)
n

2 1
3,0+u- V0+?0divu=?|ulz—(6—08). (6)

The last terms —u in(5)and —(60-6,)in(6)stand for the velocity dissipation and temperature dissipation in
energy estimates , respectively.

It is well known that system( 1) for variables(n,u,0,E,B)is symmetrizable hyperbolic when n>0. Due to
the local existence and uniqueness of smooth solutions(see [ 3]) ,Cauchy problem( 1) —(2) admits a unique local
smooth solution when the initial data are smooth. More precisely,let s=3 be an integer and(n,,u,,6,,E,,B,) €
H'(R *) satisfying n,=const.>0, then there exist T, >0 and a unique solution(n,u,8,E,B)to Cauchy problem
(1)-(2)such that

(n,u,,E,B) eC([0,T,];H(R>))NC'([0,T, ];H"'(R?)),n=const.>0.

.. 3
For a multi-index a= (@, ,a,,a;) € N’ jwe denote

lal
a

9 =——— with lal =a,+a,+a,.
R D s D :
R B )

We denote by || - |, the usual norms of Sobolev spaces H'(R ). The inner product and the norm in L*( R *)

are denoted by (-,+) and | - || ,respectively. For any given T>0,let B, ,(R *)be the Banach spaces defined by
B(R)= NC([0,T]:HH(R)),

equipped with the norm
v, =maxllv(z,-)Il,, VveB (R?),
»T osu<r : 55

where
12

(e, )= (Y oo, )"

By the local well-posedness together with( 1 )Iojlwl;\ilave( n,u,0,E,B)eB, , (R ).

@=—E,p=0pn,

n

0=9,, (7)
VxB=0,div E=b(x)-n,

VxE=0,div B=0.

The equations for B imply that B is a constant vector,and the third equations in(7)imply that n satisfies an

elliptic equation
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-0, A(In n)+n=>b(x). (8)

Since n |—=1n n is a strictly increasing function, this equation admits a unique solution n (see [4-57]).
Moreover , b= const.>0. implies n=const.>0. Once n is known, E is given explicitly by

E=-V (0,In n).

Proposition 1(see [5]) Let ¢=3,Assume Vbe H" '(R’),and b e L* (R ’)is a smooth function such
b=const.>0. a.e. x € R’. Then non-isenteopic Euler-Maxwell system (1) admits a unique smooth steady-state
solution(n,0,0,E,B) satisfying n=const.>0,where §=6, and B are constant.

In the recent years,there have been extensive studies on the Euler-Maxwell system because of its physical
importance , complexity ,rich phenomena, and mathematical challenges. When the background density b is a posi-
tive constant or is a small perturbation of a constant for both isentropic and non-isentropic Euler-Maxwell
systems , such a stability problem has been investigated in R’ or in the torus T > = (R /2)° by many authors( see
[6-11]).

When b is large ,the above techniques do not work and there are only a few results concerning this topic. For
the isentropic Euler-Poisson systems with insulating boundary conditions, Guo and Strauss in [ 4] utilized an anti-
symmetric matrix technique and the energy estimates for the divergence and the rotation of the velocity to obtain
the stability. In [ 12] , Peng followed the idea of [4] and further developed an induction argument on the order of
the derivatives of the solutions in energy estimates and solved this problem for both the isentropic Euler-Poisson
system and Euler-Maxwell system. These results were also extended to the two-fluid isentropic cases in [ 13]. In
a very similar way,Feng et al in [ 14] obtained the stability of solutions for a non-isentropic Euler-Maxwell sys-
tem with an additional temperature diffusion term. See also their very recent work [ 15] for a similar problem of a
two-fluid non-isentropic Euler-Maxwell system.

A more interesting problem is that the stability result holds or not,when the temperature diffusion term is ab-
sent. To accomplish this,Liu and Peng in [ 16] introduced new variables(In p,u,0) and chose a non-diagonal
symmetrizer for the full Euler equations. This allows to established the desired stability result for non-isentropic
Euler-Poisson system and Euler-Maxwell system(see [ 10—11]). We point out that when b is large , the above re-
sults are valid only for bounded domains. More recently,Liu et al in [ 5] established the global stability of large
steady-states for Euler-Maxwell systems in R”.

The aim of this paper is to generalize the result for isentropic Fuler-Maxwell system in [ 5] to the non-isen-
tropic case,namely,to establish the global existence of smooth solutions to Cauchy problem(1)—-(2) ,when(n,,
u,,0,,E,,B,)is a small perturbation of the steady state(n,0,8,E,B). To this end,we introduce the new varia-
bles(In p,u,0) ,choose a non-diagonal symmetrizer for the full Euler equation(see [ 11]) ,and use an induction
argument on the order of derivatives of solutions in energy estimates to obtain the stability result.

The main result of this paper is Theorem 1 stated below.

Theorem 1 Let s=3,¢=3 be a integer and (n,,u,,0,,E,,B,) € H' (R ”) satisfying (3). Under the
assumptions of Proposition 1,there exist constants §>0 and C>0,such that if

| (no=n,tt0,6,-6,,E,-E,B,-B) |, <0, (9)

Cauchy problem(1)-(2)admits a unique global solution(n,u,0,E,B)satisfying

|||(n(t,-)—;L,u(t,-),0(t,-)—00,E(t)—E,B(I)—B)|||52+J[ (M (n(z,*)-n,u(c,*),0(c, )=6,) I+

WE(z,-)-EW>,+Ma.B(z, ) >+ V B(c,)I%,)dc<

C (n()_ﬁ’u0900_009E0_E’9B()_§) [ f, Y1=0. (10)

Moreover,
Limlll (n(e,+)-n,u(t,-),0(t,-)-60.)1_,=0, (11)
lmllE(:)-Ell_, =0, (12)

t—oo



P RS 4 (A SRR R 55 43 5 1 (2020 4F)

Lm( Mo, B(e) Ml ,+M'V B(e) Ml _,)=0, (13)
paos
The paper is organized as follows. In the next section,we show the symmetrization of the Euler equations with

new variables(In p,u,0). The energy estimates and the proof of Theorem 1 are presented in the last section.
2 Symmetrization of Euler Equations with(In p,u ,0)
We first introduce new variables. From(1),(4)and(6) ,it is easy to see the pressure p satisfies the equation

5
aprus Vp+pdiv u:LIuIZ—%(G—Ge).

36
Let
g=Inp,q=In p.
Obviously, for p>0,we have
d,q+u- vq+%divu:3—10|u|2—%(e—ee). (14)
Introduce the perturbed variables
Q U
0=9-q,0=0-0, F=E-E,G=B-B,U=|u | ,Z=|F |. (15)
(C] G

Substituting these expressions into( 1)and(14) ,and taking into account(5)—(6) ,it yields the system satis-
fied by Z .

5 -1 1
9,Q+u- VQ+?div u+u- Vq=§|u|2—§@,

du+(u-V)Yu+tV Q+VgO=-F-u-ux(B+G) ,

2 1 16
al@+u-V@+?6‘div u=?lu|2—@, (16)

9,F-V xG=nu,div F=-N,
9,G+V xF=0,div G=0,

Where N=n-n is regarded as a function of Q and 6.

q q

N=3—0‘—P=0(Q)+0(@). (17)

The first three equations in( 16) are the full Euler equations and can be written in the form
d
.U+ Y, A(u,0)9 UtL(x)U=K(u,0,F,G x), (18)
=

supplemented by the Maxwell equations
0, F-VxG=nu,div F=-N,

(19)
9,G+V xF=0,div G=0,

where

Aj(ua0>: aej ul} O ) j:152’3’
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1 1
—lul*~—06
36 0

K(u,0,F,G,x)=|-F-u-ux(B+G) |,
1
—lul*-6
3

Here I, is the 3x3 unit matrix, (e, ,e, e, )is the canonical basis of R*,and e]-T is the transpose of e;. From(2)
and(15) ,the initial conditions for(18)—(19)is

def.
1=0:Z=2,—(Q,,u,,0,,F,,G,)"(x), xeR?, (20)
where
Qy=In(ny0,)-In(nb,) ,0,=6,-60, F,=E,~E ,G,=B,-B.

One can take the non-diagonal symmetrizer A,(p,0) as

p
P 0 =
p
Ap,0)=| 0TI 0 |, (21)
5
A
0 20

Since it is symmetric and positive definite for p>0 and 6>0. And
pu,  pe -

~ def. P
Aj(p’u’a):A()(p’a)Aj(u,0): pej 7UI O

P 5p
—;uj 0 Y u;

is symmetric , system( 18 ) is symmetrizable hyperbolic. Furthermore

0 p(Vq)' 0
p —
0 0 Py
Ay(p,0)L(x)= g 1]

P, gt
0 -t(v 0
6( q)

Let us introduce the matrix

3
B(pyu,aax): Z axlA](p,uyg)_2A0(p90)L(x)'
=t
It follows that

L2 o
div(pu)  (7p)"'=T(Tp)’ diV(pu]
p (7]
. (pu 2p _
B(p,u,B,x): VP div ; 13 —pr
bp
2p, - 5
() Ry Je(%)
0 Op 2 0

Therefore ,
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0 —(vp)' 0

Vp 0 -——Vp
B(p’uya’x) |<]J,u,0)=(p,0,0p): 00 ,

2 _
0 =(Vp)" 0
06( P)

is an antisymmetric matrix. These expressions and properties on A, ,Aj,ﬁj and B will be useful in the energy esti-

mates of the next section.

3 Energy Estimates and Proof of Theorem 1

Let T>0 and Z be a smooth solution of problem(18)—(20) defined on the interval[0,T]. We denote
ZT=0maXT|||Z(t, .

<

In this section,we assume s=3 and Z, is sufficiently small,so that
0 30
LS B PRSP
2 272 2 272 2
For a=(a,,a,,a;) e N’ and 8= (B,,8,,B8;) € N’ B<a stands for B;<a,forall j=1,2,3,and B<a
stands for B<<a and B#a.

Let €;>0,C>0 be generic constants independent of any time. We want to establish an energy estimate the form

(22)

NZ(e,-) |||§+cof (NUCz, ) IP+NF(c, =) 2, +0 Y, G(z,-) N2, +113.G(z,) I ,)dc<
0

CIZ,|3,tel0,T]. (23)
Similar to the periodic case in[ 10] ,we can proceed the same procedure to obtain (23 ) for Cauchy problem
through the following lemmas,so we omit the details here.

Lemmal ForkeN and ae N with k+lal <s,we have
d
5( (AU, U D+ F 17+ 116G ) +C ey 174110, 1P <

COIlo"(u,®,F) ||, ,+ ] 0Q |2, )+CUNIZMZI +CUTUNZNZI . (24)
Lemma 2 For all k e N with k<<s,we have

%( (AU, 0, U )+ 1F o 1241 G ) +Co(uy o [+ 10,0 117) <SCUNIZNZIN ACHNUNZNZI.  (25)
Lemma 3 Let ke N and a e N’ with k+lal <s,we have
FOrN | Taoy SCCL QN Taca + 1070 | T, o) +CMUNTNZIN, (26)
Fo7Q I T <CC I 97(Q,u,@) || Ty + 10w || T +CMUMENZIN,, (27)
and
IOiF I T <SCCH(Q,u,0) || T+ I 07w || T ) +CIMUNENZIN,. (28)
Lemma 4 Let ke N with k<s5—1,we have
[ ofQ lli<C( || 0" (u,®@) | >+ | o u | >)+CNUNZNZIN, (29)
| :Q |1>°<C | o (u,®) || T+CMUN>NZII . (30)
It follows from Lemma 1-3 that
Lemma 5 Forall keN and a e N’ with 1<lal and k+lal <s,we have
2 (AT U+ L F o 13416y 146, 10V 1 <
CClaU |z, + o u], H+CNUNZNZIN,. (31)

We infer from Lemma 2 and Lemma 4 that

Lemma 6 When Z, is sufficiently small,we have
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d ; ; . .
5( (A, 00U, 0U)+ || O F | °+ ] 0G| >)+C, | U | *<C || &' U || ;+CNUNZNZI . (32)

Proof of Theorem 1 We first prove(23). For any fixed index k € N with £<<s—1,we carry the induction on
lal (1<lal <s—k)of space derivatives for(31). The step of the induction is increasing from lal=1 to lal=s-k.
More specially,for la|=2, || 8*U || ,,,_, on the right-hand side of (31) can be controlled by || 8*U || ,,, in the
preceding step on the left-hand side of (31) multiplying an appropriate positive constant. Thus,we get

d .
o a, (AU, U D+ F P+ 16 1)+ 10U || <
lal <s-k
CClU >+ o a2, )+CNUNZNZIN,. (33)
where a, ,>0(k<s-1,1<l|al <s-k)are constants.

Next ,we carry on the induction on £ from k=5 to £=0. The corresponding estimate for k=s is given by(31).

For k=s-1,(33)yields
d -
E Z as—l,a( <A0Us—l,a’Us—l,a>+ || Fx—l,a || 2+ ” Gs—l,a || 2)+ || al IU || %S
lal <1
CClo'U |+ au || >)+CHTUNMZIN,. (34)
It is clear || 97'U ||  on the right-hand side of (32) can be controlled by the same term on the left-hand side

., can be controlled by || 'U || 2, in the

of (34) multiplying an appropriate constant. Similarly, || 9"*'u

preceding step. In this way,by induction on k,we get

Y e (AU T FL G 1)+ Y 10U <
C 2 (loru |+ o u | >)+CUTNNZIN . (35)
k=0
where the positive constant a, , are possibly amended based on(33). Noting the equivalence of 2 | o~U || 2, and
=0
NUN?,(25),(29)and(35) ,with a modification again the constants a,.,,we get
;t,”%'gx a, (AU, U D+ F 12+ 1G 1) +200U (e, ) N2<CNU (e, ) WZNZIN,.
Since Z, is sufficiently small ,we further obtain
jt“a _ a, (AU, U D+ F o 1P+ 111G, ) +11U(¢,+) 2 <0.
Noting the equivalence of Il Z Il and
3 AU T FL 16 ),
we get o
MWZ(z,-) |||f+£) NU(z,-)N2de<C || Z, || Z,t€[0,T]. (36)
It follows from the second equation and Maxwell equation that
WFENZ, <CNUm+cuununzi,. (37)
Io,GIZ,+IlV G, <CNUN+CNUNZNZII,. (38)

Since Z, is small enough, (36)—(38)yield(23).
It is obvious that(23)implies( 10)and the global existence of smooth solution(n,u,8,E,B)to(1)—-(2).
Finally, for all ke N and 8 e N’ with k+181 <s—1,from(10) ,we have
0'°(n-n,u,0-6, E-E) e ’(R*;L’(R*)) NW"*(R";L*(R?)),
which implies(11)—(12). Moreover, if k+181 =1, noticing B is a constant vector, we have
0B e L’ (R ;LX(R*)) NW"= (R ;L(RY)),
which yields(13).
— 29 —
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