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Two-Dimensional Jet Flow with Gravity in
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Abstract : The main object of this paper is to investigate the well-posedness theory of the incompressible inviscid jet flow
with gravity in an semi-infinitely long symmetric nozzle. The main results read that given a mass flux in the inlet of the
nozzle ,we established the existence and the uniqueness of the incompressible jet flow problem with gravity in an semi-infi-
nitely long symmetric nozzle ,which contain a smooth free surface detaching at the boundary point of the lower nozzle wall.
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1 Introduction and Main Results

In this paper,we will investigate the well-posedness of the incompressible, inviscid jet flow with gravity in a
semi-infinitely long symmetric nozzle. Some existence and uniqueness results are established in this paper.

In the following,we would like to recall some known results about the mathematical results on the cavity and
jet flows problem. In 1952,P. R. Garabedian,etc. in[ 1 ]investigated the axially symmetric finite cavity problem for
Riabouchinsky model by using the variational approach. For general existence results on jet and cavity flows,we can
refer to the references'>™* . In 1981 ,H.W Al etc. developed a new variational approach to obtain the existence and
the regularity for a minimum problem with free boundary in their breakthrough work"”’. Based on the work"*' some
remarkable results on the existence and uniqueness of axially symmetric jet flow were established in[ 6] ,asymmetric
jet flow in[ 7] ,jet flow with gravity in[ 8] ,axially symmetric infinite cavity in[9],and so on.

The motivation in this paper is to investigate the existence and uniqueness of the incompressible jet flow with
gravity in a semi-infinitely long symmetric nozzle.

Denote the upper nozzle wall of the symmetric semi-infinitely long nozzle by

N,:y=H,>0,-00 <x<0, (1)

and the lower nozzle wall by
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N,:x=g(y) e C**(- ,0), (2)
with O<a<1 and satisfying
limg(y)= - ,H,<H, ,and g(0)= —a. (3)

y—H;
Denote the symmetric axis of the symmetric nozzle as T:x=0,—00 <y<<H, and let the ray [:x=-a,— <y<0.
Next,we introduce the two-dimensional inviscid ,incompressible flow with gravity that
vV-U=0,
(U-V)U+VP=-g-e,,
where U(x,y)= (u(x,y),v(x,y) )satisfying the irrotational condition that
VxU=0, (5)
P=P(x,y)denote the velocity field and the pressure,respectively,and e,=(0,1).

(4)

Furthermore ,we assume that the nozzle wall and the symmetric axis are impermeable ,then the flow satisfies
the slip boundary condition
(u,v) n=0,on N,UN,UTUIL, (6)
where n is the unit outward normal to N, UN,UTU/L.

There is an invariance along each streamline for the steady incompressible flow,namely,

(u,v) - V[;(u2+v2+P+gy)j=0. (7)

In this paper,we consider the gravity of the flow in the nozzle,the pressure is assumed to be a constant P,

called atmosphere pressure,then the Bernoulli’s law implies that the speed of the fluid is not a constant but a

function with respect to y,i.e. ~/u’+v> =+/21-2gy (A is a constant) on the free boundary. Next,we give the
statement of the jet flow with gravity problem in the semi-infinitely long nozzle.
1.1 Statement of the physical problem

Definition 1( Jet flow with gravity problem) Suppose that the given semi-infinitely long nozzle wall N, ,N,
satisfy the conditions(1)=(3) ,given a mass flux m;>0 of the incoming incompressible flow,and the atmospheric

pressure P=P_  does there exist a unique two-dimensional symmetric incompressible jet flow with gravity in the

atm >
semi-infinitely long nozzle ,which has a smooth free streamline leaving the vertex A= (—a,0) of the lower nozzle
wall?

Definition 2( A solution to the jet flow with gravity problem) A vector(u,v,p,I")is called a solution to
the jet flow with gravity problem,provided that

(1) T can be expressed by a smooth function x=f(y) € C'( - ,0) ,such that
limf(y)=g(0)= =a, limf'(y)=g"(0),, (8)
and +/u’+0” =/2A-2gy on I';
(2)(u,0,P) e C"*(£,) NC*(L2,)solves the equations(4) ,where (2, is the flow field bounded by N, , N, ,
T and I
Theorem 1( Existence of the jet flow with gravity)  Assume that the semi-infinitely long nozzle wall N, and

N, satisfy the conditions(1)=(3) ,for any given mass flux m,>0,then there exist a constant A>0 and a solution

(u,v,P,I")to the jet flow with gravity problem defined in Definition 2.

2 Mathematical Setting on Jet Flow with Gravity Problem

2.1 Stream function setting
In order to solve the jet flow with gravity problem,according to the first equation in(4) ,set u=¢ o==¢_,
which combine with the irrotational condition(5)to obtain Ay =0 in the flow field (2. Furthermore,we impose
the Dirichlet boundary value conditions as y=m,on N, UT,and 4=0 on N, UIUT". Thus,the free boundary can
be defined by
N,
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r'=0na{y>0}, (9)
where (2 is called as the possible flow field bounded by N,,N,,l and T, which combining with equation (7)
deduces that

9
| Vil Zafl’b:«/Z)\—2gy on T, (10)
4

where v is the outer unit normal of I'. Therefore ,we formulate the jet flow with gravity problem as the following
boundary value problem for the stream function that
A=01in 2N { >0} ,
o
5=W on I,

Y=0on N,UIUTI,
Yy=mgon N, UT.

(11)

2.2 Variational approach and truncation
We first define an admissible set as K={¢ e H, ()1 =0 on N,Ul,y=m, on N,UT}.

loc

Denote the variational problem( P, ) as
L= | VT 22y g Py, (12)

where I, is the characteristic function of a set A and e,=(0,1).
Since the functional J, (¢)is unbounded for any ¢ € K, thus we need to truncate the domain {2, namely ,{2 =

0N {x=-u}. Therefore,the truncated functional is that
J“L(lﬁ) = LL | Vip=v/20=2gy1, ., A 1y<0) €2 zdde- (13)
Denote the truncated variational problem(P, ,)as finding a ¢, , such that
]A,ﬂ(‘p)\,#): mi}l JA,;(‘#) ,
heky .

where the corresponding admissible set is that

K,= i e H| () 10<s¢y<sm;,p=0on N, Ul,p=myon N, ,UT iy =

loc

m
————onl},
H,-H,_,

in which N, ,=N,N{x=-u} N, , =N,N{x=-uf and [, ={(-u,y) |H, ,<y<H |, where H, ,=max{yl-pu=
g(y)i.

3 Existence of the Jet Flow with Gravity

3.1 Existence of minimizer to the truncated variational problem
Lemma 1 Problem P, , has a solution.
Proof Here,we just need to obtain the boundedness of the functional J, ,,namely, there exists a function

i, € K, ,such that the functional J, , <+ ,thus,the variational problem P, , has a minimizer. Take y, small,and

define
m,
O’ ifx<_7a Yg%,
V2A-2gy
by=
my
my+tv2A+2gy , if ———=x<0, y=y,,

V2A-2gy
then we can extend i, into the domain £ \{y<y, I so that it belongs to the admissible set K,. Then,
-]/\,,,L('w[/0>: f f IV ipo—v 2/\_2gy[%¢0>0%my<05e2 |2dxdy+
Q.0 yosysH |0,
j j | v‘ﬂo_v2/\_2gy]w0>oim)<0§e|2dxdy=]1+]2-

.0 lysyol "0,
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Thanks to the boundedness of the domain 2, N {y,<y<H, | ,then we just need to verify J,<+o . According

to a series of calculations,we have J,<+o . Thus,similar to the argument in[ 8], there exists a minimizer )y, to
JA,//,(‘/’)\,;L): mln]A,//.(l/I) 5¢)\,/[. = K}L'
ek,
For simplicity ,we set /=i, , in the following.

Lemma 2 If ¢ is a minimum,then

lim (I Vip1’=(2A-2gy) )n-v,dS=0, (14)

e=070.naly >0
for any vector n=(n,,m,) € (C'(E))*,v, is the unit outward normal to 0N.Naty=ef.
Particularly,

| (1 Vb 12=(24=2gy) ) -vdS=0, (15)
ToNaly >0}

for any vector p=(mn,,n,) € (C'(E))*, =0 on O \Iy,m+v,<0on I;,I[,={=0fand v is the unit outward
normal to /.
Proof For any real ¢, lelsmall,let 7, (x,y)= (x+em,(x,y),y+en,(x,y) ) and define ¢, (7, (x,y))=
#(x,y). Then ¢, € K, and
(D (r,y)) " '=(I+eV ‘npl-gDn) (det Dr,) ™" and det Dc, =1+ V n+o( &),
where I is the identity matrix.

Hence we have

0=/, (), (W)=¢ (div pl Vg 1P=2 Vi Vg Viprdiv 9(20-2gym,) Y dady+o(e) . (16)

>0} B
in which E,=EN{(x,y) | ¥*+y> <R} ,R>0 sufficiently large.
Then,by a series of calculations, we have the following estimates, taking R—>+ o | the linear term of & in

inequality ( 16) vanishes , thus

Oe [ (divyl Vg I=2Vy- V- gdiv p(22-2gym,) ) ddy=

>0}
[, O Turma Tt Vi) -(20-2am) ) ds=
lim (2A=2gy—1 Vg1’ n)m-v,dS, (17)

=0 a1y > el NE
owing to the facts that v, is parallel to Vi on the streamlines and the first equation in(11) ,thus,the proof of (14)
is completed.

For any vector =(n,,m,) € (Cy(E))?,let £>0 in(16)to find the similar arguments in( 17) that
0=¢ [ (div gl Vg 12=2 - Ve rvdiv p(24-2gym,) ) dedy= | (2A=2gy-1 Vi 1)+, dS,

[4>01 NE aly>0] Niy

which directly implies the inequality (15).

In fact,Lemma 2 implies that if the free boundary d{¢>0} € C' and 4 € C' up to the free boundary I’

then | Vil =+/2A+2gy on I', ,. Therefore,we give the definition of the free boundary I’

variational problem(P, ,)as follows

A

. for the truncated

r,,=0,01y<0f Naly>0f. (18)

Lemma 3 The minimizer of the functional J, ,(¢)=inf,_, J, ,(v)is unique,and satisfies that ¢ (x,,y) =

U (x,,y)for x,>x,. .
Proof Suppose ¢, and ¢, are two minimizer and set
Pi(x,y)=¢,(x+e,y) ,0<e<].

Notice that /7 (x,y)is a minimizer the functional J; , in £ with the corresponding admissible set K7, in
which =1 (x,y) I (x—¢,y) €Q,}and K, = {4*(x+e,y) €K, | (x+e,y) €2} . The following, we extend the
Pi(x,y)and ¢,(x,y)to 2,0,

4 —
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v =

my
m for u<x<-p+te,
¥,=m, for O<x<ege,
which deduces v, =7 Vi, =47 and v, =7 N, =4, in , N LY namely,we have
bi>P, in QN0 (19)

Then , taking £—0 shows ¢, (x,y) Z¢,(x,y)in {2,. Similarly, we can obtain that ¢, (x,y) <t,(x,y)in £,.
Hence, i, =i, in (2,.

Next,set i, =i, , combining with inequality (19) ,to yield that ¢ (x+&,y) = (x,y)in {2,. Therefore, we
finish the proof of Lemma 3.
3.2 Fundamental properties of the free-boundary

Owing to the condition that the monotonicity of the minimizer ¢ (x,y ) with respect to x,we set I',  :x=

Sru(y) ,then
0,0 {y<0f N{Y>0) =1 (x,y) If, () <x<0,-00 <y<Of.

Therefore ,by using the non-oscillation Lemma 9 in Appendix, we can prove that the free boundary x =
f.(¥)is continuous in(—co ,0],which is similar to the arguments to Lemma 5.4 in[ 6], thus we omit a part of
the proof here.

Proposition 1 £, (y)is a continuous function in(—c ,0). Furthermore, f, ,(y)is analysis.

Proof 1In view of Lemma 5.4 in[ 6] ,then it suffices to show that f, ,(y+0)=f, ,(y=0)=f, ,(y)for any y<
0. Firstly ,suppose that there exists a point y, € (—o ,0) such that f, ,(y+0) #f, ,(¥,) , then without loss of
generality ,we assume that f, ,(y+0) >f,  (¥,). Then there exist some constants &, ,&,,such that there is a
strip that

E, .= [,y s (yo) —ei<a<fi (o) +e1, yo—e,<y<y, !

By virtue of the monotonicity of ¢ with respect to x,we deduce that { (x,y,) If, .(vy) —&,<x<f) ,(y,) +&, |

is a part of the free boundary I", , ,which yields that
AYy=0in E

£1,€2°
W
=0, @z 2A-2gy ‘)an,H(J’o)_81<x<fA,M(Yo>+‘91-

It follows from Cauchy-Kowalewski theorem that there exists a unique solution ¢, , =—/2A-2gy (y-y,) ,in
E, N, ,which contradicts to the fact that ¢y=m, on T. Therefore,we finish the proof.
3.3 The continuous fit and the smooth fit of the free boundary

Next,we will consider the continuous fit and the smooth fit conditions of the free boundary. Before that,we

need to give some basic and important lemmas. The lemmas are as follows

Lemma 4 If A, —A then ¢, ,—, , weakly in H, (£,)and a.e.,and f, (= ,0)—=f, (=% ,0)for
each ye (- ,0).

Proof This proof of this Lemma has been given in section 4.7 in[ 5] ,thus,we omit the processes here.

Lemma 5 For any m;>0,if A>0 is sufficiently small,then f)\.u(O) >=—a.

Proof Suppose that f, ,(0) < —a,then set S be a ring centered at B= (f1,.(0),0) with some suitable
radius R and R,which is independent of A and R, <R,,such that I, , N SN {y<0fand TNSN {y<0}is
nonempty. It follows from Lemma 10 in Appendix that there exists a constant C (independent of A ) ,such that

1Dyl < C,,. vV2A-2gy.
SN {y<0}
Choosing X, e I', ,NSN {y<0} ,X, e TNSN {y<0} with |X,-B|=1X,-BI,shows that
me= (X)) =y (X,) | <I|Dyl1X,-X, | scsm%«/z)t—zgyscmz)ﬁ,

which implies that it is impossible for sufficiently small A. Hence,we complete the proof of this Lemma.

— 5 —
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Lemma 6 For any m,>0,if A>0 is sufficiently large,then f, ,(0) <-a.

Proof Suppose that f, ,(0) =-a,then there exist a free boundary point X, = (x,,y,) € I', , with -a<x<

Siuta y
A’#T and y,<0, choosing a fixed O<r<?0( independent of A ) such that either B%”O) C{2,. According to the

non-degeneracy Lemma 8 in Appendix,we have
* 2m0 2 * *
2moe” Z2——=—F 5, (xy¥dS=c” min V2A-2gy =c" /21,
r ro s B (Xo)
2
1
w 4y
c VA

Fix the above A as A, , combining with Lemma 4, Lemma 5 and Lemma 6, we can give the continuous fit

which leads a contradiction for sufficiently large A ,where r=

condition f, ,(0)= —a. Finally,we will check that the smooth fit condition f; ,=g"(0)indeed holds,and the fact
can be obtained along the similar argument in[ 5 Jand[ 6] ,hence we omit it here.

Proposition 2 fA#,M(O) = —a holds,and then N, ﬂFAwM continuously differentiable in a neighborhood of A.
Furthermore,(/f)\w# is continuously differentiable in §¢A”7M>O} NBs(A) ,for some 6>0.

4 The Existence and Uniqueness of the Jet Flow with Gravity Problem

4.1 The existence of the jet flow with gravity problem
To establish the existence of the solution to jet flow with gravity problem,we will take limit u—o to the
solution ¢ A 1O the truncated variational problem( P AM#)and show the limit ¢, is indeed a solution to the varia-

tional problem P,(12). By virtue of the uniform gradient estimate | V lpM u, | <C in any compact subset of 2

which can be referred on Lemma 10 in Appendix, it follows from the similar arguments in Section 12 in Chapter 3

in[ 3] that there exists a subsequence | (/f)m ” }and { A, I such that A, —A and ¥, —i, weakly in H (0)and

loc
uniformly in any compact subset of {2,as n—o . In the following,we will verify that ¢, is in fact a minimizer to
the variational problem( P, ) ,and solves the boundary value problem(11). In particular,the continuous fit and
smooth fit conditions are fulfilled.

. . D . -
Since l//A“””u” is a minimizer to the function JAM”M ,then J)\M".u,,<¢).ﬂn,un) \JM”.;L,,(#/’M” )for any ¢, €K, . For

any bounded domain D C {2, we can choose a sufficiently large p, ,such that D C {2, . Choosing ¢, =4,

(0)
M

0D ,and extending ¢, with ¢ Nt outside D, hence we can conclude
T, ) <Io(0). (20)
Thus for any ¢ € K with ¢y—, € Hy(D)and ne C;(D) ,0<n<1,set (ZM” =y+(1-7) (%Mn,#n—(ﬁ,\) ,it is
easy to check that IZ”" €K, and IZ”H :,’b/\/f«,,'“n on dD. It follows from(20) that ]D(l//h”#”) $]D(lz#" ).

Therefore , similar to the proof in Lemma 5.4 in[ 5] and taking n—o0 ,one has J,(¢,) <J,() ,for any ¢ €
K with /=4, on dD,namely,is, is a minimizer to the variational problem(P, ).

Moreover, i, (x,y)is monotonic increasing with respect to x. In fact,for any(x,,y), (x,,y) € 2 with x,>
%, ,there exists a compact subset G of {2,such that(x,,y) ,(x,,y) € G. For sufficiently large n,we have GC{2, ,
and it follows from Lemma 3 that

b, (x,,y) =4, (%5,¥). (21)

Since A, CONVErges to ¢, uniformly in any compact subset of (2, then there exists a subsequence ¢ A

1, 1, P

iy
and letting n—+c in(21) ,one has ¢, (x,,y) =¢,(x,,y) ,for any(x,,y) , (x,,y) €2 with x,>x,. The monoto-
nicity of ¢, (x,y) with respect to x implies that the free boundary is y-graph. Then it follows that there exists a
continuous function f,(y) ,such that the free boundary I", of i, can be described as
Iy x=f,(y)forye (- ,0].
— 6 —



Zhang Qin; Two-Dimensional Jet Flow with Gravity in a Semi-Infinitely Long Symmetric Nozzle

Furthermore , it follows from the similar arguments in Lemma 4 that f, (y) = lim f"# () forye (-,

0]. Consequently,one has f,(0)= —a,which is the continuous fit condition to the jet flow problem with gravity.

The smoothness near the detachment point A implies that N, UI", are C',which can be obtained similarly to

the argument in[ 5]. By using the similar arguments in Lemma 2,we can conclude that | V¢, | ==./2A-2gy on
I',. Therefore ,we can obtain the solution(u,v,p,I")to the two-dimensional symmetric incompressible jet flow
problem with satisfying the conditions( 1) —(3) mentioned in Definition 2.
4.2 Uniqueness of the jet flow with gravity problem

This part shows the uniqueness of the two-dimensional symmetric jet flow with gravity problem.

Theorem 2 For any m,>0, then there exists a unique A such that the solution(u,v,p,I") established in
Theorem 1 is unique.

Proof Suppose that there exist two different A and A corresponding to two different solutions to the
boundary value problem(11) ,i.e., (¢, ,P,I")and(¥; T,

Without loss of generality ,we assume that A =A. Choosing any 0<k<1 and o>0, consider

¢:<x,y>=%(’“:‘,y+y;y°}

Then, its free boundary I'] is given by

¥y
x =kf, (yo L OJ +o for y<k(y=y,) +y,,

thus,

%, g (148,(1) K m(148) K mo(148,(1))
y y]m: y S, ()

k + +o> >

fA(yo L (—y+y0(1—k))1/2 |y|1/2 |y|1/2
1

where k=g,and k1 1,as 81 0. Thus,the free boundary of I'7 of /7 lies above the free boundary of I"; of i; in

the region { y<y, | .
It follows from(22) that kf, (yo +}’_k}’oj +0—0,as 0—0, uniformly for y<y,,for any y,<k(y—y,) +v,,which
directly yields that I" UNY lies above I'; UN, ,if o is large enough.
Thus there exists a smallest o, such that the above condition holds. By the maximum principle ,we have
YOSty in Q0 {0>01 (23)
which implies that there exists a point X, =(x,,v,)such that ¢/7°(X,)=¢;(X,).
If oy>¢,>0 for all k near 1,thus the point X, cannot belong to N5° and X, € I']* N I'; , by the maximum prin-

ciple,we deduce that

I Vgiol =J2A—2g[y0+y2;y0] | Viyyl :A/Z;\—2gy2 at X,,

which implies that A>A. It is a contradiction. Hence ,0,—0,for a subsequence k T 1,and we acquire from(23)
that ¢, (x,y) <t;. Suppose that ¥, (x,y) #¢; we have for some r>0 and £>0 such that(1+&)y, <¢; ,on the
boundary of B,(A) N {4, >0} ,similarly, we deduce that(1+e) /A ==(1+&) | Vi, |, <-(1+&) | Vi, |, =ﬁ,

which also makes a contradiction. Hence,we finish the proof.

5 Appendix

*1' which is important for the

In this part,we will mention some Lemmas that has been proved in references
proof of the Theorem 1.
Lemma 7 There exists a enough large positive constant C independent of u and A, such that if ¢ is a

— 7 —
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minimum , then for any ball B,(X°) £, with X'=(xy,70)
1
T.fHBH(X()) ’wa,,LdS =C Brr(l)i(f)l) V2A-2gy
implies that ¢, ,>0 in BR(XO) .
Lemma 8 For any small 0<k<1,there is a universal constant ¢>0 such that for all balls B,(X°) with

center X’ e £, and r small, the following holds
1
TfoB,(XU)(pA,p.dsg C ,;H(lirol) V2A-2gy
implies ¢, ,=0 in B, (X").
Lemma 9 Let G be a domain in {2, bounded by two disjointed arcs y,,y, of the free boundary,y=p,,y=
B, Suppose that the acrs y,(i=1,2)lie in{B,<y<B, | with the endpoints(«,,83,)and({,,B,). Suppose the distant
d=dist( G,A)>0,then
18,-B,1 <C max{la,—-a,l,1{,=L, 1},
where C is a constant depending only on A ,d and m,,.

Lemma 10 Let X, be a free boundary point in G and G € {2, ,then there exists a constant C>0 depending

only on A,G such that for any minimizer ¢, ,,

| Vgl <C m(e}x«/Z/\—Zgyin G.
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