|Table of Contents|

Quenching for Degenerate Semilinear Parabolic Equations with Time Delay(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2006年01期
Page:
7-13
Research Field:
数学
Publishing date:

Info

Title:
Quenching for Degenerate Semilinear Parabolic Equations with Time Delay
Author(s):
Chen Youpeng 12
(1. Department ofMathematics, Yancheng Normal Institute, Yancheng 224002, China)
(2. School ofMathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China)
Keywords:
quenching p roblem degenerate semilinear parabolic equation time delay critical length a simp le estimate
PACS:
O175.26
DOI:
-
Abstract:
This paper dealswith the quenching p roblem for degenerate semilinear parabolic equationswith time delay. By using regularizationmethod and upper and lower solutions’ technique, we obtain the existence of a unique classical so2 lution to the above p roblem and p rove that there exists a critical length a *such that the solution u of the above p roblem exists globally for a < a *and quenches in finite time for a > a * . Furthermore, we also get a simp le estimate on the criti2 cal length a *.

References:

[ 1 ]  Pao C V. Nonlinear Parabolic and Ellip tic Equations[M ]. New York: Plenum Press, 1992.
[ 2 ]  Sheng Q, Khaliq A Q. A compound adap tive app roach to degenerate nonlinear quenching p roblems[ J ]. NumerMethods for PartialDifferential Equations, 1999, 15 (1) : 29—47.
[ 3 ]  Karawada H. On solutions of initial boundary p roblem for ut = uxx + 1/ 1 - u [ J ]. Publ R IMS Kyoto Univ, 1975, 15: 729— 736.
[ 4 ]  AckerA, WalterW. The Quenching Problem forNonlinear PartialDifferential Equations[M ]. Lecture Notes inMath, Ber- lin: Sp ringer2Verlag , 1976.
[ 5 ]  Chan C Y, Ke L, Vatsala A S. Impulsive quenching for reaction diffusion equations[ J ]. Nonlinear Anal, 1994, 22 (11) : 1323—1328.
[ 6 ]  Chan C Y, Kong P C. Quenching for degenerate semilinear parabolic equations[ J ]. App licable Analysis, 1994, 52 ( 1) : 17—25.
[ 7 ]  Deng K. Dynamical behaviour of solutions of a semilinear heat equation with nonlocal singularity[ J ]. SIAM J Math Anal, 1995, 26 (1) : 98—111.
[ 8 ]  Ke L, Ning S. Quenching for degenerate parabolic equations[ J ]. NonlinearAnal, 1998, 34 (7) : 1123—1135.
[ 9 ]  Pao C V. Quenching p roblem of a reaction-diffusion equation with time delay[ J ]. NonlinearAnal, 2000, 41 (1 /2) : 133— 142.
[10 ]  Chan C Y, L iu H T. Global existence of solutions for degenerate semilinear parabolic p roblem[ J ]. NonlinearAnal, 1998, 34 (4) : 617—628.
[ 11 ]  Chen Y P. Quenching for a degenerate and singular parabolic equation with time delay[ J ]. Journal of Nanjing University Mathematical Biquarterly, 2003, 20 (2) : 139—150.
[ 12 ]  FloaterM S. Blow up at the boundary for degenerate semilinear parabolic equations [ J ]. Arch RatMech Anal, 1991, 114 (1) : 57—77.
[ 13 ]  Friedman A. PartialDifferential Equations of Parabolic Type[M ]. Inc Englewood Cliffs: Prentice2Hall, 1964.
[ 14 ]  Martel Y, Soup let P h. Small time boundary behavior of solutions of parabolic equations with noncompatible data [ J ]. J Math Pures App l, 2000, 79 (6) : 603—632.
[ 15 ]  陈友朋. 一类退化的反应扩散方程的熄灭问题[ J ]. 南京大学学报数学半年刊, 1999, 16 (1) : 133—143.

Memo

Memo:
-
Last Update: 2013-05-05