[ 1 ] Pao C V. Nonlinear Parabolic and Ellip tic Equations[M ]. New York: Plenum Press, 1992.
[ 2 ] Sheng Q, Khaliq A Q. A compound adap tive app roach to degenerate nonlinear quenching p roblems[ J ]. NumerMethods for PartialDifferential Equations, 1999, 15 (1) : 29—47.
[ 3 ] Karawada H. On solutions of initial boundary p roblem for ut = uxx + 1/ 1 - u [ J ]. Publ R IMS Kyoto Univ, 1975, 15: 729— 736.
[ 4 ] AckerA, WalterW. The Quenching Problem forNonlinear PartialDifferential Equations[M ]. Lecture Notes inMath, Ber- lin: Sp ringer2Verlag , 1976.
[ 5 ] Chan C Y, Ke L, Vatsala A S. Impulsive quenching for reaction diffusion equations[ J ]. Nonlinear Anal, 1994, 22 (11) : 1323—1328.
[ 6 ] Chan C Y, Kong P C. Quenching for degenerate semilinear parabolic equations[ J ]. App licable Analysis, 1994, 52 ( 1) : 17—25.
[ 7 ] Deng K. Dynamical behaviour of solutions of a semilinear heat equation with nonlocal singularity[ J ]. SIAM J Math Anal, 1995, 26 (1) : 98—111.
[ 8 ] Ke L, Ning S. Quenching for degenerate parabolic equations[ J ]. NonlinearAnal, 1998, 34 (7) : 1123—1135.
[ 9 ] Pao C V. Quenching p roblem of a reaction-diffusion equation with time delay[ J ]. NonlinearAnal, 2000, 41 (1 /2) : 133— 142.
[10 ] Chan C Y, L iu H T. Global existence of solutions for degenerate semilinear parabolic p roblem[ J ]. NonlinearAnal, 1998, 34 (4) : 617—628.
[ 11 ] Chen Y P. Quenching for a degenerate and singular parabolic equation with time delay[ J ]. Journal of Nanjing University Mathematical Biquarterly, 2003, 20 (2) : 139—150.
[ 12 ] FloaterM S. Blow up at the boundary for degenerate semilinear parabolic equations [ J ]. Arch RatMech Anal, 1991, 114 (1) : 57—77.
[ 13 ] Friedman A. PartialDifferential Equations of Parabolic Type[M ]. Inc Englewood Cliffs: Prentice2Hall, 1964.
[ 14 ] Martel Y, Soup let P h. Small time boundary behavior of solutions of parabolic equations with noncompatible data [ J ]. J Math Pures App l, 2000, 79 (6) : 603—632.
[ 15 ] 陈友朋. 一类退化的反应扩散方程的熄灭问题[ J ]. 南京大学学报数学半年刊, 1999, 16 (1) : 133—143.