[ 1] Bondy J A, Murty U S R. G raph Theory w ith Applications[M ]. N ew York: E lsev ier Science, 1976.
[ 2] Stahl S. The embedd ing s of a graph a survey[ J]. J Graph Theory, 1978, 2: 275-298.
[ 3] No rdhaus E, S tew art B, W hite A T. On the max im um g enus of a g raph[ J]. Journal Comb inator ia l Theory Ser ies B, 1971, 11: 258-267.
[ 4] Xuong N H. H ow to dete rm ine the m ax im um g enus o f agraph[ J]. Journa l o f Comb inator ial Theory Series B, 1979, 26:217-225.
[ 5] Kundu S. Bounds on number of d isjo int spanning trees[ J]. Journa l Com binato rial Theory Se ries B, 1974, 17: 199-203.
[ 6] Junge rman M. A character ization of upper-embeddab le g raphs[ J] . Transactions o f the Am er ican M athema tica l Society,1978, 241: 401-406.
[ 7] Xuong N H. U pper-embeddab le g raphs and re lated top ics[ J]. Jou rnal o f Comb inator ia l Theory Se ries B, 1979, 26: 226-232.
[ 8] Nebesky L. A new character izations o f the m ax imum genus of graphs[ J]. Czechoslovak M ath J, 1981, 31( 106 ): 604-613.
[ 9] H uang Y Q, L iu Y P. An improvem ent of a theorem on the m ax im um genus for g raphs[ J]. M athem aticaApplicate, 1998, 11( 2): 109-112.
[ 10] H uang Y P, Liu Y P. The m ax imum genus of graphs with diam e ter three[ J]. Discrete Mathematics, 1999, 194( 1 /3):139-149.