|Table of Contents|

Nonexistence and Existence of Positive Solutions of Semilinear Elliptic Systems(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2006年01期
Page:
25-29
Research Field:
数学
Publishing date:

Info

Title:
Nonexistence and Existence of Positive Solutions of Semilinear Elliptic Systems
Author(s):
Zhu Liping~1Zhang Zhengce~2
1.College of Science,Xi’an University of Architecture and Technology,Xi’an 710054,China
Keywords:
ex istence nonex istence m ethod of m ov ing sphe res
PACS:
O175.25
DOI:
-
Abstract:
In th is paper, we introduce the Ke lv in transform s and apply the me thod of m ov ing spheres w hich is the sign ificant s imp lifica tions of mov ing plane m ethod to prove the ex istence and nonex istence of positive so lutions for a c lass of sem ilinear e lliptic systems. Them ethod of mov ing spheres doesn t’ not need the m ax im um princ ip le for elliptic sy stem s and ob tains the ex act fo rm of positive so lutions for the critical case wh ich ex tends the resu lts proved by the integ ra lm ethod. M oreover, thism ethod  is also used to prove the Liouv ille theorems for the general non linear e lliptic equations or systems.

References:

[ 1] G idas B, Spruck J. G loba l and local behav iour o f positive so lu tions o f non linear elliptic equa tions [ J]. Comm Pure Appl M a th, 1981, 34( 6): 525-598.
[ 2] M itid ieri E. Nonex istence o f positive solutions of sem ilinear e lliptic system s in RN [ J]. D iff Integ ral Eqns, 1996, 9 ( 3): 465-479.
[ 3] De Figue iredo D G, Fe lm er P L. A L iouville-type theo rem fo r elliptic sy stem s [ J]. Ann Scuo la No rm Sup Pisa, 1994, 21 ( 3): 387-397.
[ 4] Busca J, M an-sevich R. A Liouv ille-type theo rem for Lane-Emden system s [ J] . Ind iana UnivM a th J, 2002, 51( 1): 37- 51.
[ 5] Zhang Z C, W angW M, Li K T. L iouville-type theo rem s for sem ilinear e lliptic system s [ J]. J Partial Diff Eqns, 2005, 18( 4): 304-310.
[ 6] L iY Y, ZhuM. Un iqueness theo rem s through them ethod ofm ov ing spheres [ J]. DukeM a th J, 1995, 80( 2): 383-417.
[ 7] Li Y Y, Zhang L. Liouv ille-type theorem s and H arnack-type inequa lities for sem ilinear elliptic equations [ J]. J d- Analyse M a th, 2003, 90: 27-87.
[ 8] Lin C S. A c lassifica tion o f solutions of a con fo rm ally invarian t fou rth order equa tion in RN [ J]. Comm entM athH elv, 1998, 73( 2): 206-231.
[ 9] Peletier L A, V an De rVorst R C A M. Ex istence and non-existence o f positive so lutions of non-linear elliptic system s and the b iharm on ic equation [ J]. D iff Int Eqns, 1992, 5( 4) : 747-767.
[ 10] Se rr in J, Zou H. The ex istence o f positive entire so lutions of ellipticH am itonian system s [ J]. Comm Part Diff Eqns, 1998, 23( 3 /4): 577-599.
[ 11] Zhang Z C, LiK T. Spike-layered so lutions o f singu la rly perturbed quasilinearD irich let problem s [ J]. JM a th AnalAppl, 2003, 283( 2): 667-680.
[ 12] Zhang Z C, Li K T. Spike-layered so lu tions with com pact support to some s ingu lar ly perturbed quasilinear e lliptic problems in general smooth domains [ J]. J Comp ApplM ath, 2004, 162( 2): 327-340.

Memo

Memo:
-
Last Update: 2013-05-05