|Table of Contents|

Adaptive Conic Trust-Region Method for Nonlinear Least Squares Problems(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2007年01期
Page:
13-21
Research Field:
数学
Publishing date:

Info

Title:
Adaptive Conic Trust-Region Method for Nonlinear Least Squares Problems
Author(s):
Yang Yang1Sun Wenyu2
1.School of Mathematics and Physics Science,Xuzhou Institute of Technology,Xuzhou 221008,China
2. School ofMathem atics and Com puter S cien ce, Nan jing Norm alUn iversity, Nan jing 210097, Ch ina
Keywords:
non l inear least squares p rob lem s trus t reg ion m ethod con icm odel global convergen ce superlinear convergence
PACS:
O221.2
DOI:
-
Abstract:
In th is p aper, a n ew m ethod for non l inear least-squares p rob lem s is presented. Th e m ethod uses the quas-i N ew ton update of the Gau ss-New tonH ess ian based on a con icm ode.l A m ethod w ith adapt ive tru st region strategy is cons tructed. Th em eth od n eed s to solve th e tru st reg ion subprob lem w ith a con ic m ode,l wh ich can be tran sform ed to the trust region subproblem w ith a quad ratic mode.l So the algorithm is easily imp lem en ted. The new algorithm is an alyzed and its glob al and local sup erlin ear convergence resu lts is estab lished. Num erical tes ts are presen ted that con firm the eff-i ciency of the new algorithm.

References:

[ 1]  Denn is J E, Gay D M, W elsch R E. An adaptive non linear least-squares algorithm [ J]. ACM Transac tions onM a th Softw are, 1981( 7): 348-368.
[ 2]  Denn is J E, Gay D M, W elsch R E. Algor ithm s 573 NL2SOL- an adaptive non linear least a lgo rithm E4[ J]. ACM T ransactions on M ath Softw are, 1981( 7): 369-383.
[ 3]  Dav idonW C. Con ic approx im ation and co llinear sca ling fo r optim izers[ J]. SIAM J Num er Ana, 1980( 17) : 268-281.
[ 4]  H an Q M, Sheng S B. Con icm ode l algorithm s for non linear least-squares prob lem s[ J]. Nume ricalM athem atics, A Journal o f Ch ineseUn ive rs ities, 1995( 1): 48-59.
[ 5]  Yuan Y, SunW. Optim ization Theory andM e thods[M ] . B eijing: Sc ience Press, 1997.
[ 6]  Zhang X S, Zhang J L, L iao L Z, et a.l An adaptive trust reg ion me thod and its converg ence[ J]. Sc ience in Ch ina ( SeriesA ), 2002, 45: 620-631.
[ 7]  Schnabel R B, Eskow E. A new m od ified cho lesky factoriza tion[ J]. SIAM Journa l on Scien tific Com puting, 1990( 11):1 136-1 158.
[ 8]  Moré J J, Garbow B S, H illstrom K E. Testing unconstra ined optim ization so ftw are[ J]. ACM T ransM ath So ftw are, 1981,7( 1): 17-41.
[ 9]  S teihaug T. The con jug ate g radien tm ethod and trust reg ion in la rge sca le optim iza tion[ J] . S IAM J Nume rAna,l 1983( 20):
626-637.

Memo

Memo:
-
Last Update: 2013-05-05