[ 1] H e B S, Zhou J. A mod ified alterna tion direction me thod fo r convex m in im ization prob lem s[ J]. AppliedM athem atics Letters, 2000, 13( 1): 122-130.
[ 2] A rrow K J, H urw icz L, U zaw aH. Stud ies in Linear and Nonlinea rProg ramm ing[M ]. Ca lifornia: Stan fo rd Un iversity Press, 1958.
[ 3] Gabay D, M erc ier B. A dual a lgor ithm for the so lution of non linear va riational problem s v ia finite-elem en t approx im ations [ J] . Computers andM athem atics w ith Applications, 1976, 2( 1): 17-40.
[ 4] Fo rtinM, G low insk i R. Augm ented Lagrang ianM ethods: Applications to the So lution of Boundary-Valued Problem s[M ]. Am ste rdam: North H o lland Publish ing Co,1983.
[ 5] G low inski R. Num er ica lM ethods fo rNon linearV ariationa l Problem s[M ]. N ew York: Springer-Verlag, 1984.
[ 6] G low insk iR, Le P Ta llec. Augm ented Lagrang ian and operator-splitting m ethod in nonlinea rmechan ics[ C ] / / SIAM Studies in App liedM a them atics. Ph ilade lph ia: PA, 1989.
[ 7] NagurneyA. Netw ork E conom ics, A Var iationa l InequalityApproach[M ]. Do rdrecht: K luw erA cadem ic, 1993.
[ 8] H an D R, H ong K Lo. A new stepsize ru le in H e and Zhou s’ a lternating direction m ethod[ J]. App liedM athem atics Letters, 2002, 15: 181-185.
[ 9] H ou L S, SunW Y. Three-Term Precond itioned Con jug ate G radientM ethod and Trust Reg ion Subproblem [ J] . Journal o f Nanjing Norm al University: Natural Science Ed ition, 2001, 24( 3) : 1-6.
[ 10] Kojim aM, Sh indo S. Ex tens ions of New ton and quasi-New ton m ethods to sy stem s o fPC1 equa tions[ J] . Journa l o f Operations Research Soc ie ty of Japan, 1986, 29: 352-374.
[ 11] So lodovM V, T seng P. M odified Pro jection-typem ethods form ono tone inequa lities[ J]. S IAM Journal on Contro l and Opti m ization, 1996, 34: 1 814-1 830.
[ 12] So lodov M V, Svaiter B F. A new pro jection m ethod fo r v ariational inequality prob lem s[ J] . SIAM Journa l on Con tro l and Op tim ization, 1999, 37: 765-776.