|Table of Contents|

Existence of Nontrivial Solution for Biharmonic Problems Involving Critical Sobolev Exponents(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2007年04期
Page:
1-5
Research Field:
数学
Publishing date:

Info

Title:
Existence of Nontrivial Solution for Biharmonic Problems Involving Critical Sobolev Exponents
Author(s):
Ahamed Adam Abdelgadir12Shen Yaotian1Yao Yangxin1
1.School of Mathematical Sciences,South China University of Technology,Guangzhou 510640,China
2. B lue N ile U nivers ity, Facu lty of E ngineering Department of Mathematics, Sudan-Dam azin
Keywords:
b iharmon ic prob lem crit ica lS obolev exponen t non trivial solu tion
PACS:
O175.2
DOI:
-
Abstract:
-

References:

[ 1] M itid ieri E. A Rellich type iden tity and app lications[ J]. Comm P D E, 1993, 18: 125-151.
[ 2] Osw ald P. On a pr io ri estim ates for positive so lutions o f a sem ilinear b iharm on ic equation in a ba ll[ J]. CommentM ath,Carolinae, 1985, 26: 565-577.
[ 3] Ghoussoub N, Yuan C. M u ltiplic so lu tions for quasilinea r PDEs invo lv ing the critical Sobo lev and H ardy exponents[ J].
T rans Am e rM ath Soc, 2000, 352( 12): 5 703-5 743.
[ 4] Kang K D, Deng Y B. Sobolev-H a rdy inequa lities and critical biharm onic problem s[ J] . ActaM a th Sc ,i 2003, 23( A) ( 1):106-114.
[ 5] BrezisH, N irenberg L. Positive so lutions o f nonlinear elliptic equation invo lv ing critica l Sobo lev exponents[ J]. Comm Pure App lM ath, 1983, 36: 436-477.
[ 6] Reng Y B, Yang J F. Ex istence o fmu ltiple so lutions and b ifu rcation for cr itical sem ilinear b iharm on ic equations[ J]. Sys Sci
andM a th Sc,i 1995, 8( 4) : 319-326.
[ 7] Xuan B J, Chen Z C. Ex istence, m ultip lic ity and bifurcation for cr itica l polyharmon ic equations[ J]. Sys Sc i andM ath Sc,i1999, 12( 1): 59-69.
[ 8] Yao Y X, Shen Y T, Chen Z H. B iha rmon ic equa tion and im proved hardy inequa lity [ J]. Ac taM ath App l S in ica, 2004,20( 3): 433-440.

Memo

Memo:
-
Last Update: 2013-05-05