[ 1] S iege l C L. über die C lassenzah l quadratischer Zah lk Örper[ J]. A cta Ar ith, 1935( 1): 83-86.
[ 2] Esterm ann T. On Dir ichlet’s L-functions[ J] . J LondonM ath Soc, 1948( 23): 275-279.
[ 3] Chow la S. A new proof o f a theorem of S iege l[ J] . Ann ofM a th, 1950( 51): 120-122.
[ 4] Go ld feld D M. A sim ple proo f o f Siegel‘s theorem [ J]. Pro cNa tA cad Sc iUSA, 1974( 71): 1 055.
[ 5] Ta tuzaw a T. On S iegel’s theo rem[ J] . Japanese Journa l ofM a th, 1951( 21): 163-178.
[ 6] H offste in J. On the S iegel-Tatuzaw a theo rem [ J]. Ac taA rith, 1980( 38): 167-174.
[ 7] Lu H ongw en, Ji Chungang. On the Sieg el-Tatuzawa theorem [ J]. Prog ress in Natural Science, 2001( 11): 1 221-1 223.
[ 8] Ji Chungang, Lu H ongw en. Low er bound o f real prim itive L-func tion a t s= 1[ J]. Acta A rith, 2004, 111( 4): 405-409.
[ 9] Go ld feld D M, Schinzel A. On Siegel’s zero[ J]. Ann Scuo la Norm a le Sup Pisa C l Sc,i 1975, 4( 4): 571-583.
[ 10] Louboutin S. M a jo rations exp licites de |L ( 1, x ) | [ J]. C R Acad Sc i Par is, 1993( 316) : 11-14.
[ 11] Louboutin S. M a jo rations exp licites de |L ( 1, x ) | ( su ite) [ J] . C R A cad Sc i Paris, 1996( 323): 443-446.
[ 12] W ashington L C. Introduction to Cyc lo tom ic Fields[M ]. New York: Spr inge r-Ver lag, 1982.