[ 1] Bethue l F, B rezis H, H ele in F. G inzburg-Landau Vortices[M ] . B erlin: B irkauser, 1994.
[ 2] Bethue l F, B rezis H, H ele in H. Asympto ics fo r theG inzburg-Landau functiona l[ J] . Ca leVa rPDF, 1993, 1( 3): 123-148.
[ 3] Le i Yu tian. Rad ia lm in im izer o f p-G inzburg-Landau func tiona l w ith nonva lish ing D irich let bounday cond ition[ J]. Non linear Analysis, 2005, 60: 117-128.
[ 4] Le i Yu tian. Rem arks on them in im izer o f a G inzburg-Landau type[ J] . Bu ll KoreanM ath Soc, 2005, 42( 3): 509-520.
[ 5] 雷雨田. 具变系数的G inzbu rg-Landau泛函径向极小元[ J] . 南京师大学报: 自然科学版, 2004, 27( 3): 1-6.
[ 6] Lassoued L. Asymp to ics for a G inzburg-Landau m ode lw ith p inn ing [ J]. NonlinearAna,l 1997, 4: 27-58.
[ 7] 丁时进, 刘祖汉. 一类G inzburg-Landau泛函的渐近性态[ J]. 数学年刊, 1997, 18A( 4): 437-444.
[ 8] Ding S, L iu Z, YuW. Pinning o f vortices for the G inzburg-Landau function w ith va riab le coeffic ient[ J]. 高校应用数学学报, 1997, 12B( 1): 77-88.