[ 1] SunW, Yuan Y. Optim ization Theory andM e thods: Nonlinear Programm ing[M ]. New York: Springer, 2006.
[ 2] W o lkow icz H, Sa ig al R, Vandenbe rghe L, et a.l H andbook o f Sem idefinite Prog ramm ing [M ]. Boston-Dordrech t-London:K luw erAcadem ic Pub lishe rs, 2000.
[ 3] Q i L, SunW, W ang Y. Num er ica l mu ltilinea r a lgebra and its applica tions[ J]. Frontiers ofM athem atics in Ch ina, 2007( 2): 501-526.
[ 4] Li C, SunW. An equ iva lent cond ition in convex sem ide finite prog ram [ J/OL]. http: / /www. paper. edu. cn /dow nloadpaper.
php? ser ia l- num ber= 200802- 167.
[ 5] Q i L. Converg ence ana lys is o f som e algorithm s for so lv ing nonsmoo th equations[ J]. M athema tics o f Ope ra tions Resea rch,1993, 18: 227-244.
[ 6] M a lick J, Sendov H S. C larke genera lized jacob ian o f the projection on to the cone o f positive sem idefin item atr ices[ J]. Set-Valued Analysis, 2006, 14: 273-293.
[ 7] Chan Z, Sun D. Constraint nondegene racy, strong regular ity and nonsingular ity in sem ide fin ite programm ing [ J]. S IAM JOpt, 2008, 19: 370-396.
[ 8] FlegelM L, K anzow C. A compar ison of three nondege racy conditions in sem ide finite prog ram s[ J/OL]. http: / /www. m athm atik. un-i wuerzburg. de /~ kanzow /paper /DegenPropP. pd.f
[ 9] Ca iX, SunW. A nonm onotone line search a lgo rithm for nonsm oothy d iscretem in im ax prob lem [ J]. Journa l o f Nan jing Normal University: Natural Science, 2003, 26( 4): 16-21.