|Table of Contents|

A Bound on Quasi-Laplacian Spectral Radius of Connected Graphs(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2008年02期
Page:
27-30
Research Field:
数学
Publishing date:

Info

Title:
A Bound on Quasi-Laplacian Spectral Radius of Connected Graphs
Author(s):
Zhu Xiaoxin1Sun Zhiren2Cao Chunzheng1
( 1. School ofM athem atics and Phys ics, N an jing Un iversity of Inform at ion Science and T echnology, Nan jing 210044, Ch ina)
( 2. School ofMathem atics and Com puter S cien ce, Nan jing Norm alUn iversity, Nan jing 210097, Ch ina)
Keywords:
connected g raphs quas-i Laplac ian m atrix e igenv alue spec tral radius deg ree sequence
PACS:
O157.5
DOI:
-
Abstract:
LetG be a connected g raph, its quas-i Lap lac ian m atrix isQ (G ) = D (G ) + A(G ), w he reD (G ) is the d iagonal m atr ix o f its vertex degrees andA (G ) is its ad jacencym atrix. U sing som e properties o fm atr ix, a sharp upper bound on the quas-iLaplac ian spectra l rad ius o f connec ted g raphs is ob tained, and the super ior ity o f the upper bound is compared w ith othe r bounds through some g raphs

References:

[ 1] Zhang X D, Luo Rong. The Lap lac ian e igenva lues o fm ix ed graphs[ J]. L inea rA lgebraApp,l 2003, 362: 109-119.
[ 2] 郭曙光. 图拟拉普拉斯矩阵的特征值[ J]. 淮阴师范学院学报: 自然科学版, 2003, 2( 1) : 10-12.
[ 3] 汪乐飞. 图的拟拉普拉斯矩阵的最大特征值[ J] . 乐山师范学院学报, 2005, 20( 5): 14-15.
[ 4] E llingham M N, Zha X iaoya. The spectra l rad ius of g raphs on surfaces[ J]. J Comb in Theory, Series B, 2000, 78: 45-56.
[ 5] Bondy J A, Murty U S R. G raph TheoryW ith App lica tions[M ] . New Yo rk: TheM acm illan Press LTD, 1976.
[ 6] B iggs N. A lgebra ic Graph Theo ry[M ]. Cam bridge: Cam bridge University Press, 1974.
[ 7] 李乔, 冯克勤. 论图的最大特征根[ J]. 应用数学学报, 1979, 2( 2): 167-175.
[ 8] 吴雅容. 关于图的谱及色数的若干结果[ D]. 上海: 华东师范大学, 2004.
[ 9] 杨进, 陈丽娟. 图的H am ilton- 圈与连通度[ J]. 南京师大学报: 自然科学版, 2003, 26( 1): 11-16.

Memo

Memo:
-
Last Update: 2013-05-05