[ 1] Bernardi C, M aday Y, Patera A T. Dom a in decom position by the mo rtar e lem en t m ethod[M ] / / Kaper H G, GarbeyM,Pieper G W. Asym ptotic and Num er ica lM e thods for Partial Differential Equations w ith C ritical Pa rame ters. Dordrech t: K luwerAcademic Pub lishe rs, 1993: 269-286.
[ 2] M a rc inkow ski L. Them ortar e lem ent m ethod w ith loca lly nonconform ing e lements [ J]. BIT, 1999, 39( 4): 716-739.
[ 3] Chen J R, Xu X J. Them ortar e lem ent m ethod fo r ro tated Q1 e lem ent [ J] . J CompM ath, 2000, 20( 3) : 313-324
[ 4] K im K, Y iD, Lee S. M o rtarm ethod fo r nonconform ing fin ite e lements [ J] . AppM ath Comp, 2005, 167( 1): 650-669.
[ 5] Doug las Jr J, Santos J E, Sheen D, et a.l Noncon fo rm ing Ga lerkin me thods based on quadrila tera l elem ents fo r second order
ellip tic problem s [ J]. M a thM ode and Num erAnu,l 1999, 33( 4): 747-770.
[ 6] Ca i Z, Doug las Jr J, Santos J E, et a.l Nonconform ing quadrilate ra l finite elem ents: a co rrection [ J]. C alcolo, 2000, 37( 4): 253-254.
[ 7] Rannacher R, Turek S. Sim ple nonconform ing quadrilate ra l Stokes e lem ent [ J] . Num erM eth for PDEs, 1992, 8( 2): 97-111.
[ 8] Ca i Z, Doug las Jr J, Ye X. A stab le noncon fo rm ing quadrilatera l finite e lem ent m ethod for the stationa ry Stokes and Nav ier-
Stokes equations[ J]. Ca lco lo, 1999, 36( 4): 215-232.
[ 9] Doug las Jr J, Santos J E, Sheen D. A nonconform ingm ixed fin ite elem entm ethod fo rmaxw ells’ equa tions[ J]. M a thM ode ls Meth App Sc,i 2000, 10( 4): 593-613.
[ 10] Lee C, Lee J, Sheen D. A lock ing-free nonconfo rm ing finite e lem ent m ethod fo r planar linear e lasticity [ J]. Adv in Comp M ath, 2003, 19( 1 /3) : 277-291.
[ 11] B ramb le JH, Pasciak J E, Xu J. The ana lysis of mu ltigr id a lgo rithm s w ith nonested spaces and non inher ited quadratic fo rm s
[ J]. M ath Com p, 1991, 56( 193): 1-34.
[ 12] Chen Z X, Osw ald P. Mu ltig rid and m ultileve l m ethods fo r noncon fo rm ing Q1 e lem ents [ J]. M a th Comput, 1998, 67( 222) : 667-693.
[ 13] H uang P Q, Chen J R. Mu ltigr id me thods fo rm ortr- type rotated Q1 elem ents for second order e lliptic problem s[ J]. M a th Numer S inica, 2008, 30( 1): 1-16.
[ 14] B ramb le J H. Mu ltig ridM ethods [M ]. Boston: Pitm an, 1993.
[ 15] Xu X J, Chen J R. M u ltigr id for the m ortar elem ent m ethod forP 1 nonconfo rm ing elem ent [ J]. Num erM ath, 2001, 88( 2): 381-398.
[ 16] B renner S C, Sco tt L R. TheM a them atical Theo ry o f F inite E lem entM ethods[M ]. N ew York: Springer-Verlag, 1994.