[ 1] Ing lese G. An inverse prob lem in co rrosion detection[ J]. Inverse Problem s, 1997, 13( 4) : 977-994.
[ 2] Fas ino D, Ing lese G. D iscrete m ethods in the study o f an inverse prob lem fo rLaplace‘s equa tion[ J]. IMA J Num er ica l Analysis, 1999, 19( 1): 105-118.
[ 3] Fas ino D, Ing lese G. An inverse Rob in problem for Lap lace. s equation: theoretica l results and num erical m ethods[ J] . Inverse Problem s, 1999, 15( 1): 41-48.
[ 4] Yang X, Cheng J. An inve rse problem in detecting co rrosion in a pipe[ J]. Jou rnal o fN ingx iaUn ive rs ity: Na tura l Sc ience Edition, 2003, 24( 3) : 215-217.
[ 5] H uang X, H uang J, Chen Y. E rror ana lysis of a param ete r expans ion me thod fo r corro sion detection in a p ipe[ J]. Computers and M a them aticsW ith App lications, 2008, 56( 10): 2 539-2 549.
[ 6] Be lgacem F B, Fekih H E. On C auchy. s prob lem: I. A v ariational Steklov-Poincare theory[ J]. Inverse Prob lem s, 2005,21( 6): 1 915-1 936.
[ 7] A za iezM, Be lgacem F B, Fek ih H E. On Cauchy. s prob lem: II. Com pletion, regu larization and approx im a tion[ J]. Inverse Problem s, 2006, 22( 4): 1 307-1 336.
[ 8] H uang J, Chen Y. A regu lariza tion m e thod fo r the function reconstruction from approx im ate av erage fluxes[ J]. Inverse Problems, 2005, 21( 5) : 1 667-1 684.