|Table of Contents|

Numerical Method for Corrosion Detection Problem in Non-Sheet Case(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2008年04期
Page:
29-32
Research Field:
数学
Publishing date:

Info

Title:
Numerical Method for Corrosion Detection Problem in Non-Sheet Case
Author(s):
Chen Yu Huang Jianguo
Department of Mathematics,Shanghai Jiaotong University,Shanghai 200240,China
Keywords:
finite e lem en t Quas-iNew tonM ethod inve rse prob lem s regu la rization
PACS:
O242.23
DOI:
-
Abstract:
The problem o f recove ring the corrosion coe ffic ient in an inaccessib le inter ior part from the e lec tric inform ation in an accessible part of a physica l dom ain is studied, wh ich is a typical inv erse prob lem in m a them atical phy sics. U sua-l ly, the prescribed data have no ise erro r. A var ia tiona l form ulation is propo sed to der ive the corro sion coe fficient, based on the Dir ichlet-Neum ann data on the accessib le part. The quas-iN ew ton iterativ em ethod in op tim ization is used to so lve the nume rical so lution o f th is variational prob lem. Som e theoretica l ana lys is is prov ided, and the num erical experim ent show s that the m ethod is effec tive.

References:

[ 1] Ing lese G. An inverse prob lem in co rrosion detection[ J]. Inverse Problem s, 1997, 13( 4) : 977-994.
[ 2] Fas ino D, Ing lese G. D iscrete m ethods in the study o f an inverse prob lem fo rLaplace‘s equa tion[ J]. IMA J Num er ica l Analysis, 1999, 19( 1): 105-118.
[ 3] Fas ino D, Ing lese G. An inverse Rob in problem for Lap lace. s equation: theoretica l results and num erical m ethods[ J] . Inverse Problem s, 1999, 15( 1): 41-48.
[ 4] Yang X, Cheng J. An inve rse problem in detecting co rrosion in a pipe[ J]. Jou rnal o fN ingx iaUn ive rs ity: Na tura l Sc ience Edition, 2003, 24( 3) : 215-217.
[ 5] H uang X, H uang J, Chen Y. E rror ana lysis of a param ete r expans ion me thod fo r corro sion detection in a p ipe[ J]. Computers and M a them aticsW ith App lications, 2008, 56( 10): 2 539-2 549.
[ 6] Be lgacem F B, Fekih H E. On C auchy. s prob lem: I. A v ariational Steklov-Poincare theory[ J]. Inverse Prob lem s, 2005,21( 6): 1 915-1 936.
[ 7] A za iezM, Be lgacem F B, Fek ih H E. On Cauchy. s prob lem: II. Com pletion, regu larization and approx im a tion[ J]. Inverse Problem s, 2006, 22( 4): 1 307-1 336.
[ 8] H uang J, Chen Y. A regu lariza tion m e thod fo r the function reconstruction from approx im ate av erage fluxes[ J]. Inverse Problems, 2005, 21( 5) : 1 667-1 684.

Memo

Memo:
-
Last Update: 2013-05-05