|Table of Contents|

Congruences With Factorials Modulo p Ⅱ(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2008年04期
Page:
33-36
Research Field:
数学
Publishing date:

Info

Title:
Congruences With Factorials Modulo p Ⅱ
Author(s):
Dai Lixia
School of Mathematics and Computer Science,Nanjing Normal University,Nanjing 210097,China
Keywords:
factor ia ls exponen tia l sum s cong ruences
PACS:
O156.4
DOI:
-
Abstract:
-

References:

[ 1] Guy R K. Unso lved Problem s in Num ber Theory [M ]. 2nd ed. New York: Spr inger, 1994.
[ 2] Cobe li C, V? j? ituM, Zaharescu A. The sequence n! (m od p ) [ J]. J Ram anujanM a th Soc, 2000, 15( 3) : 135-154.
[ 3 ] Chen Yonggao, Da i L ix ia. Cong ruences w ith fac to ria ls m odulo p [ J/OL]. In tegers: E lectron ic J Comb Number Theory,2006, 6: A21. http: / /www. in tege rs- ejcnt. o rg /.
[ 4] ErdÊ s P, Stewart C. On the greatest and least pr im e facto rs of n! + 1[ J]. J LondonM a th Soc, 1976, 13( 3) : 513-519.
[ 5] Ga raevM Z, Luca F, Shpar linsk i I E. Cha racte r sum s and congruences w ith n! [ J] . T rans Am erM ath So c, 2004, 356( 12): 5 089-5 102.
[ 6] GaraevM Z, Luca F, Shpar linsk i IE. Sum s and cong ruencesw ith factoria ls[ J]. J Re ineAngew M ath, 2005, 584( 3): 29-44.
[ 7] Luca F, StÁ nicÁ P. Products o f facto rials m odulo p [ J]. Co lloqM ath, 2003, 96( 2): 191-205.
[ 8] Stew art C. On the greatest and least prim e factors o f n! + 1 II[ J]. Pub lM ath Debrecen, 2004, 65( 3) : 461-480.
[ 9] V inogradov IM. E lem ents of Num be rTheo ry[M ]. New Yo rk: Dover Publica tions, 1945.
[ 10] GaraevM Z, Luca F, Shpa rlinsk i I E. W aring problem w ith facto rials[ J]. Bu ll Austra lM a th Soc, 2005, 71( 2 ): 259-264.

Memo

Memo:
-
Last Update: 2013-05-05