[ 1] Barenblatt G I. S im ilar ity and Interm ed ia teA sym ptotics [M ] . New Yo rk: Consultants Bureau, 1979.
[ 2] H ill JM. So lution of D iffe rentia l Equations byM eans o f One-Param eterG roups [M ]. Boston: Pitm an, 1982.
[ 3] Ovs iann ikov L V. Group Properties of D iffe rentia l Equation [M ] . M oscow: Novosib irsk, 1962.
[ 4] Stephan iH. D ifferentia lEqua tion: The ir So lution U sing Symm etries [M ] . C amb ridge: Cam bridgeUn ive rsity Press, 1989.
[ 5] B lum an GeorgeW, Sukeyuk iK. Symm etries and D ifferentia l Equa tions [M ] . New Yo rk: Spr inge r-Ver lag, 1989.
[ 6] Go ldschm idt H, Spencer D. On the nonlinear cohom o logy o f Lie equations III [ J]. ActaM ath, 1976, 136: 103-239.
[ 7] O lver P J. Symm etry groups and group invar iant so lutions o f pa rtia l differential equations [ J]. J D iff Geom, 1979, 14: 497-
542.
[ 8] B ila N. L ie g roups applications to m inim a l sur faces PDE [ J]. D ifferentia l Geom etry-Dynam ical System s, 1999, 1( 1): 1-9.
[ 9] G iacom o C. Symm etry transfo rm ations, isovecto rs, and conserva tion law s [ J] . JM ath Phys, 1986, 27( 4): 972-978.
[ 10] Sukeyuk iK, B lum an GW. W hen nonlinear differential equa tions are equ iva lent to linear d ifferentia l equations [ J]. SIAM,
J ApplM ath, 1982, 42( 5) : 1157-1173.
[ 11] 谷超豪, 郭柏灵, 李翔坤, 等. 孤立子理论与应用[M ]. 杭州: 浙江科学技术出版社, 1990: 216-267.
[ 12] Fan E G. Som e new reduc tions from a lax integrab le system [ J]. ActaM ath Appl Sin ica, 2002, 18( 3) : 405-410.
[ 13] 田畴. 李群及其在微分方程中的应用[M ]. 北京: 科学出版社, 2001.
[ 14] O lver P J. App lica tions of Lie Groups to D iffe rentia l Equations [M ]. N ew York: Springer-Verlag, 1986.