|Table of Contents|

Convergence of Antiperiodic [0,P[(1/2h)δ]] Trigonometric Interpolation for Odd Equidistant Nodes(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2009年03期
Page:
19-24
Research Field:
数学
Publishing date:

Info

Title:
Convergence of Antiperiodic [0,P[(1/2h)δ]] Trigonometric Interpolation for Odd Equidistant Nodes
Author(s):
Ren Meiying
Department of Economics and Mathematics,Wuyi University,Wuyishan 354300,China
Keywords:
difference polynom ia l operatorP
1
2h
 
antiperiodic function 2-pe riod ic 0 P
1
2h
 
tr igonom etr ic interpolation
convergence
PACS:
O174.42
DOI:
-
Abstract:
A k ind of 2-per iodic 0, P 1 2h tr igonom etr ic Interpo lation problem of antiperiod ic func tion fo r odd equ id istant nodes is studied. Some equiva lent cond itions are estab lished in 4n+ 1 and the explic it form s o f som e interpo lation functions on the interpo la tion prob lem are g iven. In som e specia l case, the convergence o f the interpo la tion operators is d iscussed.

References:


[ 1] Franz- jurgen Delvos, Ludger Kno che. Lacunary interpo la tion by antiperiod ic trigonom e tric po lynom ia ls[ J]. BIT, 1999, 39
( 3): 439-450.
[ 2] Sun X iehua. A gene ra liza tion o f ( 0, m ) interpo lation[ J]. J o fM ath Res & Expo, 1999, 19( 1): 9-17.
[ 3] 马欣荣. 奇数个等距结点上的2- 周期0, P2h三角插值[ J]. 河南师范大学学报: 自然科学版, 2006, 34( 4):171-174.
[ 4] Liu Yongp ing. On the trigonom e tric interpo lation and the entire interpo la tion[ J] . Approx Theory and Its App,l 1990, 6( 4):85-106.
[ 5] 何尚琴. 反周期函数的2- 周期( 0, m )三角插值的收敛性[ J]. 纯粹数学与应用数学, 2007, 23( 4): 513-518.
[ 6] 孙永生. 函数逼近论[M ]. 北京: 北京师范大学出版社, 1989.

Memo

Memo:
-
Last Update: 2013-04-23