[ 1] M a rk J Jensen. An alterna tive m ax imum like lihood estim ator o f long-m em ory pro cesses using compactly suppo rted w ave lets [ J] . Journa l of E conom ic Dynam ics Con tro ,l 2000, 24( 3): 361-387.
[ 2] Pe ter F Cra igm ile, Peter Guttorp, Dona ld B Perc iva.l W ave le t-based parame ter estim ation fo r po lynom ia l con tam inated fractionally d ifferenced processes[ J] . IEEE T ransactions on S ignal Processing, 2005, 53( 8): 3 151-3 161.
[ 3] T se Y K, Anh V V, Tieng Q. M ax im um like lihood estim ation o f the fractiona l d ifferenc ing param eter in an ARFIMA model using w ave lets[ J] . M athem atics and Computers in Sim ulation, 2002, 59( 1 /3): 153-161.
[ 4] H osking J R M. Frac tiona l d iffe rencing[ J]. B iom etr ika, 1981, 68( 1): 165-176.
[ 5] Brockwe ll P, Dav is R. T ime Ser ies: Theory andM ethods[M ]. 2nd ed. N ew York: Springer, 1991.
[ 6] Ba illieR T. Long-m em ory processes and fractiona l in teg ration in econome trics[ J] . Journa l o f Econom etr ics, 1996, 73( 1): 5-59.
[ 7] M cC oy E J, W a lden A T. W ave let ana ly sis and synthesis o f stationary long-memo ry pro cesses[ J] . Journa l o f Compu tational and G raph ica l Sta tistics, 1996, 5( 1): 26-56.
[ 8] Lehm ann E L. Theory of Po int Estima tion[M ]. N ew York: W iley, 1983.
[ 9] Donald B Perciva,l Andrew T W a lden. W aveletM ethods for Tim e Ser ies Analysis[M ]. Cambr idge: Cam bridge Un iversity Press, 2000.