[ 1] Im adaM, Fu jim or iA, Tokura Y. M eta-l insu lator transitions[ J]. RevM od Phys, 1998, 70( 4) : 1 039-1 263.
[ 2] M a ttheiss L F. E lectronic structure of quas-i one-d imensional B aVS3 [ J]. So lid S tate Commun, 1995, 93( 10): 791-795.
[ 3] M iha ly G, K zsm rki I, Z?mborszky F, et a .l O rb itally dr iven spin pa iring in the three-dim ensional nonm agne tic M ott insu lator BaVS3: Ev idence from sing le-crystal stud ies [ J] . Phys Rev B, 2000, 61( 12) : 7 831-7 834.
[ 4] Fago t S, Foury-Ley lekian P, Ravy S, et a.l S tructura l aspects o f them eta-l insu la to r transition in B aVS3 [ J]. So lid State Sc,i 2005, 7( 6): 718-725.
[ 5] Booth C H, F igueroa E, Law rence JM, e t a.l Effect of m agnetic fie lds on the me ta-l insu la to r transition in BaVS3 [ J]. Phy s Rev B, 1999, 60( 21): 14 852-14 856.
[ 6] H ideto Ima ,i H irofum iW ada, M asayuki Shiga. Ca lorim e tric study on m eta-l insu lator trans ition quas-i one-dim ensional BaVS3 [ J] . J Phys Soc Japan, 1996, 65( 11): 3 460-3 463.
[ 7] M assene t O, S ince J J, M erc ie r J, et a.l M agnetic and electr ica l properties o f BaVS3 and BaVx Ti1- x S3 [ J]. J Phys Chem So lids, 1979, 40( 8) : 573-577.
[ 8] G ra f T, M andrus D, Law rence JM, et a.l Suppression of the me ta-l to- insulator transition in BaVS3 w ith pressure[ J]. Phy s Rev B, 1995, 51( 4): 2 037-2 044.
[ 9] K z sm rk i I, M ih ly G, Ga l R, et a.l Pressu re- induced suppress ion o f the spin-gapped insu lato r phase in BaVS3: an infrared optica l study[ J]. Phys Rev B, 2005, 71( 19): 193 103-193 106.
[ 10] K zsm rki I, M ih ly G, G a l R, et a .l Separation o f orbita l con tributions to the optical conduc tiv ity o f BaVS3 [ J]. Phy s Rev Lett, 2006, 96( 21): 186 402-186 405.
[ 11] Ivek T, Vu le ticc T, Tom ic c S, et a.l Co llective charge exc itations be low them eta-l to- insu la to r transition in BaVS3 [ J]. Phy s Rev B, 2008, 78( 3): 035 110-035 114.
[ 12] 苗仁德, 田苗, 黄桂芹. BaVS3 晶格动力学研究[ J]. 物理学报, 2008, 57( 6): 3 709-3 713.
[ 13] Ba roni S, G ironco li S D, Co rso A D, et a.l Phonons and re lated crystal properties from density- func tiona l perturbation theo ry[ J] . RevM od Phy s, 2001, 73( 2): 515-562.
[ 14] Xav ier Gonze, Changyo l Lee. Dynam ica lm atrices, Bo rn e ffective charges, die lectric perm ittiv ity tenso rs, and inte ratomic fo rce constants from density- functiona l perturbation theory [ J] . Phy s Rev B, 1997, 55( 16): 10 355-10 368.
[ 15] Gonze X, Beuken JM, Caracas R, e t a.l F irst-princ ip les computation o f ma teria l prope rties: the AB IN IT softw are pro ject [ J]. Com putM a ter Sc,i 2002, 25( 3) : 478-492.
[ 16] Trou llier N, M artins J L. E fficient pseudopotentia ls for p lane-w ave ca lculations[ J]. Phy s Rev B, 1991, 43( 3 ): 1 993- 2 006.
[ 17] Goedecker S, Tete rM, H utte r J. Separab le dua-l space Gauss ian pseudopotentia ls[ J]. Phys Rev B, 1996, 54( 3): 1 703- 1 710.
[ 18] M onkhorst H J, Pack J D. Spec ia l po ints fo r Br illou in-zone integrations[ J]. Phys Rev B, 1976, 13( 12): 5 188-5 192.
[ 19] B l ch l P E, Jepsen O, Andersen O K. Improv ed tetrahedron m ethod for Br illou in-zone in teg ra tions[ J]. Phys Rev B, 1994, 49( 23): 16 223-16 233.
[ 20] Pe les A, ChouM Y. Lattice dynam ics and therm odynam ic properties of NaA Hl 4: density- functiona l ca lcu la tions using a linear response theory[ J]. Phys Rev B, 2006, 73( 18): 184 302-184 312.