[ 1] Tapan S. Dynam ica l ana lys is o f a de layed ratio-dependentH o lling-Tanner predato r-prey model[ J]. JM a th Ana lApp,l 2009, 358: 389-402.
[ 2] Ce lik C. The stability and H op f b ifurcation for a predato r-prey sy stem w ith tim e de lay [ J]. Chaos So litons and Fractals, 2008, 37( 1): 87-99.
[ 3] Ag izaH N, ELabbasy EM. Chaotic dynam ics of a discrete prey-preda torm odel w ith H olling type II[ J]. Nonlinear Ana,l 2009, 10( 1): 116-129.
[ 4] Robert S C, Chirs C, Ruan S G. Intraspec ific inter ference and consum er-resource dynam ics[ J]. Disc rete Contin Dynam Syst Ser, 2004, 4B( 3): 527-546.
[ 5] LiuW, X iao D, Y i Y. Relax ation oscillations in a c lass of predator prey system s[ J]. Differential Equations, 2003, 188 ( 1) : 306-331.
[ 6] Tao Z, Kuang Y, Sm ith H L. G loba l ex istence o f per iodic so lu tions in a c lass of de layed Gause-type pre-dator-prey sy stem s [ J]. NonlinearAnal TMA, 1997, 28( 8): 1 373-1 394.
[ 7] Xu R, Chen L, Chap la inM A J. Attractiv ity in a delayed three- spec ies ratio-dependent predator-prey sy stem w ithou t dom inating instantaneous nega tive feedback[ J]. ActaM athem aticae App licatae Sin ica, 2003, 19( 2) : 317-332.
[ 8] FanM, W ang K. Per iodic ity in a de layed ratio-dependent predator-prey system [ J]. JM a th Anal App,l 2001, 262: 179- 190.
[ 9] Ga ines R E, M awh in J L. Co inc idence Deg ree and NonlinearD ifferential Equations[M ]. Ber lin: Springer, 1977.