[ 1] Ad i Ben- Israe,l Thomas N E Grev ille. Generalized Inverses Theory and Applica tions[M ]. 2nd ed. New Yo rk: Springer-Verlag, 2003.
[ 2] 陈永林. 广义逆矩阵的理论与方法[M ]. 南京: 南京师范大学出版社, 2005.
[ 3] W ang Guorong, Zheng B ing. The reverse order law for the g eneralized inverseA2 T, S [ J] . AppliedM athem atics and Computation, 2004, 157( 2): 295-305.
[ 4] M edhat A Rakha. On theMoo re-penrose gene ra lized inve rsem atrix [ J]. App liedM a them atics and C om putation, 2004, 158 ( 1) : 185-200.
[ 5] SunW enyu, W e iY im in. Triple reve rse-o rder law forw e ighted genera lized inv erses[ J]. AppliedM a them a tics and Computation, 2002, 125( 2 /3): 221-229.
[ 6] T ian Yongge, Cheng Shizhen. Som e iden tities form oore-penrose inve rses of m atr ix products[ J]. L inear andMu ltilinear A-l gebra, 2004, 52( 6): 405-420.
[ 7] Campbe ll S L, M eyer Jr C D. Genera lized inverses of linear transforma tions, corrected repr int of the 1979 o rig inal[M ] . New York: Dover Publica tions Inc, 1991.
[ 8] YuanW angu,i Liao Zuhua. The genera lized m oore-penrose inverses o fm atr ices over rings[ C ] / / The Proceed ings of the Seventh Internationa l Confe rence onM atr ix Theo ry and App lications. Liverpoo:l Wo rld Academ icUn ion, 2006: 289-292.