|Table of Contents|

Theoretical Research of Passenger Flow Based on Actual Transport Network(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2010年03期
Page:
45-50
Research Field:
物理学
Publishing date:

Info

Title:
Theoretical Research of Passenger Flow Based on Actual Transport Network
Author(s):
Tang FurongYang Xianqing
School of Sciences,University of Mining & Technology of China,Xuzhou 221008,China
Keywords:
comp lex ne tw orks Ch inese ra ilw ay netw ork passenger flow o f transport netw ork
PACS:
U293.13
DOI:
-
Abstract:
Com pa ring w ith deM oura. s m ode l o f Ferm -iD irac sta tistics fo r traffic in a ne tw ork, we stud ied the statistical properties o f the genera l passeng er transpo rt netwo rk w ith Bose-E inste in d istr ibu tion. A transport o f passenger netw ork can be modeled as a therm odynam ics system exchang ing partic les and energy w ith its env ironm ent, w he re passengers are considered as particles. W ith appropr iate ly de fined energy- leve l struc ture, the ana ly tica l expressions of the passenger flow of the transpo rt netwo rk can be ob tained. Based on the emp irical prope rties o f Ch inese ra ilw ay netwo rk, we propose an idealized m ode,l in which larg e numbers of passengers move random ly from one sta tion to another in th is ra ilway ne-t w ork. Num e rica l s imu lations show tha t whatever the ear ly state is, in the ty ] lim it the netw ork reaches a sta tionary sta tew ith the passenge r flow in propo rtion w ith the nodewe ight. The num erical simu lations resu lts are shown to be nearly in ag reem ent w ith the ana ly tica l expressions.

References:

[ 1] Barab s iA L, A lbert R. Em ergence of scaling in random netw orks[ J] . Science, 1999, 286: 509-512.
[ 2] A lbert R, Ba rabas iA L. S tatistical mechan ics of com plex ne tw orks[ J]. RevM od Phys, 2002, 74( 1): 47-97.
[ 3] Barab s iA L, Bonabeau E. Sca le- free ne tw orks[ J]. Sc ientific Am e rican, 2003, 288( 5): 50-59.
[ 4] Newm anM E J. The structure and function o f com plex netwo rks[ J]. SIAM Rev, 2003, 45( 2): 167-256.
[ 5] 吴金闪, 狄增加. 从统计物理学看复杂网络研究[ J]. 物理学进展, 2004, 24( 1): 18-46.
[ 6] Zhao L, Park K, La iY C. Attack vu lnerab ility o f sca le- free networks due to cascad ing breakdown[ J]. Phy s Rev, 2004, 70 ( 3): 035101( R ).
[ 7] Ravasz E, Ba rab siA L. H ierarch ica l organ iza tion in comp lex netwo rks[ J]. Phys Rev E, 2003, 67( 2): 026112.
[ 8] A lbert R, Jeong H, Barab?siA L. D iame ter of the wo rld w ide w eb[ J]. Nature, 1999, 401: 130-131.
[ 9] Cam acho J, Guim era R, Am aral L A N. Robust pa tterns in food w eb struc ture[ J]. Phy s Rev Lett, 2002, 88( 22): 228102.
[ 10] Newm anM E J, Strogatz S H, W atts D J. Random graphs w ith arbitrary degree distr ibutions and the ir app lications[ J]. Phys Rev E, 2001, 64( 2): 026118.
[ 11] Jeong H, Tomber B, A lbert R, et a.l The large-sca le o rganization of m etabo lic ne tw orks[ J] . Nature, 2000, 407: 651-654.
[ 12] Jeong H, M ason S, B arab si A L, et a.l Lethality and centra lity in pro te in netw orks[ J] . Nature, 2001, 411: 41-42.
[ 13] Barth lemyM, Gondran B, Gu ichard E. Larg e sca le cross-correlations in interne t tra ffic[ J]. Phys Rev E, 2002, 66( 5): 056110.
[ 14] B, Thurner S, Rodgers G J. Traffic on com plex networks: tow ards understanding g loba l sta tistica l properties from m -i cro scop ic density fluctua tions[ J]. Phys Rev E, 2004, 69( 3) : 036102.
[ 15] S ingh B K, Gup teN. Cong estion and decongestion in a comm un ica tion netwo rk[ J]. Phys Rev E, 2005, 71( 5) : 055103.
[ 16] W angW X, W ang B H, Y in C Y, et a .l Traffic dynam ics based on local routing protoco l on a sca le-free netw ork[ J]. Phy s Rev E, 2006, 73( 2): 026111.
[ 17] Zhao L, Lai Y C, Park K, et a.l Onse t o f tra ffic congestion in comp lex ne tw orks[ J]. Phy s Rev E, 2005, 71( 2): 026125.
[ 18] deM oura A P S. Ferm -i dirac statistics and tra ffic in comp lex netwo rks[ J]. Phys Rev E, 2005, 71( 6): 066114.
[ 19] Germ ano R, deM oura A P S. T ra ffic o f partic les in comp lex netwo rks[ J]. Phys Rev E, 2006, 74( 3): 036117.
[ 20] Gu im era R, Ama ra l L A N. M ode ling the w orld-w ide a irpo rt netw ork[ J]. Eur Phys J B, 2004, 38: 381-387.
[ 21] Gu im era R, M ossa S, Tu rtsch iA, et a .l The wo rldw ide a ir transpo rtation ne tw ork: anom a lous centra lity, comm un ity structure, and c ities. g loba l ro les[ J] . Proc Nat1 A cad Sc iUSA, 2005, 102( 22): 7 794-7 799.
[ 22] Wu Z H, Braunste in L A, Colizza V, e t a.l Optim a l paths in comp lex ne tw orks w ith correlated w e ights: thew orldw ide airport netwo rk[ J]. Phys Rev E, 2006, 74( 5): 056104.
[ 23] Ba rthe lemy M, B arrat A, Pastor-Sato rras R, et a.l Character ization and m odeling o f w eighted netw orks[ J]. Phys ica A, 2005, 346( 1 /2) : 34-43.
[ 24] 刘宏鲲, 周涛. 中国城市航空网络的实证研究与分析[ J]. 物理学报, 2007, 56( 01) : 106-112.
[ 25] Latora V, M a rchior iM. Is the Bo ston subw ay a sm a llw or ld ne tw ork[ J]. Physica A, 2002, 314( 1 /4): 109-113.
[ 26] Sen P, Dasgupta S, Cha tter jee A, et a.l Sm al-lw or ld properties of the Indian ra ilway netw ork[ J]. Phys Rev E, 2003, 67 ( 3): 036106.
[ 27] 谭江峡, 王杜鹃, 王鑫, 等. 与地理环境相关的中国铁路客运网拓扑结构[ J] . 物理学报, 2008, 57( 11) : 6 771-6 776.
[ 28] 赵伟, 何红生, 林中才, 等. 中国铁路客运网网络性质的研究[ J]. 物理学报, 2006, 55( 08) : 3 906-3 911.
[ 29] 赵金山, 狄增如, 王大辉. 北京市公共汽车交通网络几何性质的实证研究[ J]. 复杂系统与复杂性科学, 2005, 2( 2): 45-48.
[ 30] Newm anM E J. Analysis o fw e ighted netwo rks[ J]. Phys Rev E, 2004, 70( 5): 056131.
[ 31] 汪秉宏, 王文旭, 周涛. 交通流驱动的含权网络[ J]. 物理, 2006, 35( 4) : 304-310.

Memo

Memo:
-
Last Update: 2013-04-08