[ 1] FisherR A, T ippet L H C. L im iting form s o f the frequency distr ibutions o f the la rgest or sm allest m ember o f a sam ple[ J]. Proceedings o f Cambr idg e Ph ilo sophica l Society, 1928, 24: 180.
[ 2] vonM ises R. La d istr ibution de la plus g rande de n valeurs[ J]. Rev istaM athema ticaUn ion Interba lcan ique, 1936, 1: 141- 160.
[ 3] Pickands J. Statistica l inference using ex trem e order statistics[ J]. The Annals of Statistics, 1975, 3( 1): 119-131.
[ 4] deH aan L, Ferre ira A. Ex trem e Va lue Theory: An Introduction[M ]. New Yo rk: Spr ing er, 2006.
[ 5] Brands J J A M, S teute l F W, W ilm s R J G. On the num ber o f max im a in a discrete sam ple[ J]. Sta tistics and Probability Le tters, 1994, 20: 209-217.
[ 6] Li Y. A note on the number of records near the max im um [ J]. Sta tistics and Probab ility Letters, 1997, 43: 153-158.
[ 7] Pakes A G, Steute l FW. On the number of records nea r the m ax imum [ J]. The Austra lian Journal o f Statistics, 1997, 39 ( 2): 179-192.
[ 8] Sanjib Sabhapandit, Sa tyaN, M a jum da r. Density o f near-ex trem e events[ J]. Physica l Rev iew Letters, 2007, 98( 14): 41- 47.
[ 9] L in J G, H uang C, Zhuang Q Y. Estim ating gene ra lized sta te density of near-extreme even ts and its app lications in analyzing stock data[ J] . Insurance: M athem atics and Econom ics, 2010, 47: 13-20.
[ 10] W asse rm an L. A ll o fNonparam e tric Statistics[M ]. New Yo rk: Spr inger-Ve rlag, 2007.