|Table of Contents|

Monte Carlo Simulation of Thermal Conduction in One-Dimensional Doped-Chains

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2011年01期
Page:
55-58
Research Field:
物理学
Publishing date:

Info

Title:
Monte Carlo Simulation of Thermal Conduction in One-Dimensional Doped-Chains
Author(s):
Yang LiPan LiangZhu JialiYang YuLiu Hong
School of Physics and Technology,Nanjing Normal University,Nanjing 210046,China
Keywords:
one-dim ensional cha in M onte C arlo doped-a tom the rma l conduction elastic co llision
PACS:
O551
DOI:
-
Abstract:
On the base o f the elastic collision m ode,l w e investigate the influence o f doping on the therm al conduction in one-d imensional cha in, by usingM onte Car lo stochastic samp ling num erical m ethod and consider ing the loca l co llid ing order contro lled by the stochastic sam pling according to the probab ility determ ined by the local temperature. The resu lts of simu la ting equa lm ass one-dim ensional cha in show s tha t its temperatu re profile presen ts a temperature g rad ient, and there is a steady equ ilibr ium sta te. It sa tisfies Fourier law. A fter doping a d ifferen t a tom in chain, the mass and po sition of the doped-a tom causes a fu lly diffe rentT - x pro file on who le chain. The amp litude of increasing temperature around the doped-atom slow ly increases w ith the increase o f the difference betw een doped-atom?? s m ass and cha in-atom?? sm ass. The m ass d ifference is larger and the osc illa ting amp litude of tem perature a round the doped-atom is large r. Thus enough la rge temperature d ifference causes the enough therm al dynam ic d ifference lead ing to break around doped- atom. When the distribution of m ass in cha in is in disorder, the results show tha t the deg ree of disorde r ism uch larger, the tem perature d ifference a t the left tip o f cha in is large r and it is easier to break. Furthermo re, when the disorder ?? is large r 1??0, them iddle part o f disorde r-chain still has a g rad ient linear distr ibution and satisfies Fourier law, although the tem perature o sc illation is much larg erw ith the increase of d iso rder degree.

References:

[ 1]Bamb iHu, Baowen L,i H ong Zhao. H eat conduction in one-dim ens iona l cha ins[ J]. Phys Rev Lett, 1998, 57( 3): 2 992- 2 995.
[ 2]D ing Chen, Aubry S, Tsiron is G P. Brea ther mob ility in d iscre te f4 nonlinea r lattices[ J]. Phys Rev Lett, 1996, 77( 23): 4 776-4 779.
[ 3]A lonso D, ArtusoR, CasaticG, e t a .l H eat conductivity and dynam ica l instability[ J]. Phy sRev Lett, 1999, 82( 9): 1 859- 1 862.
[ 4]Lepr i S, L iv i R, Po liti A. H eat conduction in cha ins of nonlinea r osc illa to rs[ J]. Phys Rev Lett, 1997, 78( 10): 1 896- 1 899.
[ 5]G iardin?? C, Liv iR, Po litiA, et a.l Finite therm a l conductiv ity in 1D lattices[ J]. Phys Rev Lett, 2000, 84( 10): 2 144- 2 147.
[ 6]TakahiroH atano. H ea t conduction in the diatom ic Toda la ttice rev isited[ J]. Phys Rev E, 1999, 59( 1): R1-R4.
[ 7]CasatiG. Energy transport and the fourier hea t law in classica l system s[ J]. Found Phys, 1986, 16( 1): 51-61.
[ 8]H a tano T. H eat conduction in the diatom ic Toda lattice rev isited[ J] . Phys Rev E, 1999, 59( 1): R1-R4.
[ 9]Du Y, L iH, Kadano ff L P. B reakdow n o f hydrodynam ics in a one-dim ensional system o f ine lastic pa rtic les[ J] . Phys Rev Lett, 1995, 74( 8): 1 268-1 271.
[ 10]Abh ishek Dhar. H eat conduction in a one-d im ensiona l gas o f e lastically co llid ing partic les of unequa lm asses[ J]. Phy s Rev Le tt, 2001, 86( 16): 3 554-3 557.
[ 11]蒋城欢, 刘红. 一维原子链的热导模拟[ J]. 南京师大学报: 自然科学版, 2006, 29( 3): 36-39.

Memo

Memo:
-
Last Update: 2013-04-11