|Table of Contents|

Edge Coloring of Planar Graphs With Δ=6 Without Short Cycles Contain Chords(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2011年03期
Page:
19-24
Research Field:
数学
Publishing date:

Info

Title:
Edge Coloring of Planar Graphs With Δ=6 Without Short Cycles Contain Chords
Author(s):
Ni Weiping
School of Mathematics and Statistics,Zaozhuang University,Zaozhuang,277160,China
Keywords:
planar graphedge coloringmaximum degreecycle
PACS:
O157.5
DOI:
-
Abstract:
Let G be a planar graph of maximum degree Δ,G is said to be class 1 if χ’( G) = Δ and class 2 if χ’( G) = Δ + 1,where χ’( G) denotes the chromatic index of G. In 1965,Vizing proved that every planar graph of maximum degree at least eight is of class 1. By applying a Discharging method,we prove that every simple planar graph G with Δ = 6 is of class 1,if G does not contain chordal-k-cycles ( 4≤k≤7) .

References:

[1] Vizing V G. On an estimate of the chromatic index of a p-graph[J]. Diskret Analiz,1964,3 ( 1) : 25-30.
[2] Vizing V G. Critical graphs with given chromatic class[J]. Diskret Analiz,1965,5 ( 1) : 9-17.
[3] Sanders D P,Zhao Y. Planar graphs of maximum degree seven are class 1[J]. Combin Theory Ser B,2001,83( 2) : 201- 212.
[4] Zhang L. Every planar with maximum degree 7 is of class 1[J]. Graphs Combin,2000, 16( 4) : 467-495.
[5] Zhou G. A note on graphs of class 1[J]. Discrete Math,2003,263( 1 /3) : 339-345.
[6] Bu Y,Wang W. Some sufficient conditions for a planar graph of maximum degree six to be class 1[J]. Discrete Math,2006, 306( 13) : 1 440-1 445.
[7] Li X,Luo R. Edge coloring of embedded graphs with large girth[J]. Graphs Combin,2003, 19( 3) : 393-401.
[8] Wang Weifan,Chen Yongzhu. A sufficient condition for a planar graph to be class 1[J]. Theoret Computer Sci,2007,385 ( 1 /3) : 71-77.

Memo

Memo:
-
Last Update: 2011-09-15