[1] Chattopadhyay J,Arino O. A predator-prey model with disease in the prey[J]. Nonlinear Analysis, 1999,36( 6) : 747-766.
[2] Xiao Y,Chen L. Analysis of a three species eco-epidemiological model[J]. Journal of Mathematical Analysis and Applications, 2001, 258( 2) : 733-754.
[3] Xiao Yanli,Chen Lansun. A ratio-dependent predator-prey model with disease in the prey[J]. Applied Mathematics and Computation,2002, 131( 2) : 397-414.
[4] Hethcote H W,Wang W,Han L,et al. A predator-prey model with infected prey[J]. Theoretical Population Biology,2004, 66( 3) : 259-268.
[5] Regoes R R,Ebert D,Bonhoeffer A. Dose-dependent infection rates of parasites produce the Allee effect in epidemiology[J]. Proc Roy Soc Lond,2002, 269( 1 488) : 271-279.
[6] Li Guihua,Wang Wendi. Bifurcation analysis of an epidemic model with nonlinear incidence[J]. Applied Mathematics and Computation,2009, 214( 2) : 411-423.
[7] Liu W M,Levin S A, Iwasa Y L. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models [J]. Math Biol,1986, 23( 2) : 187-204.
[8] 徐为坚. 具有种群Logistic 增长及饱和传染率的SIS 模型的稳定性和Hopf 分支[J]. 数学物理学报,2008,28( 3) : 578-584.
[9] Ruan Shigui,Wang Wendi. Dynamical behavior of an epidemic model with a nonlinear incidence rate[J]. Differential Equations, 2003, 188( 1) : 135-163.
[10] 贺昱曜,闫茂德. 非线性控制理论及应用[M]. 西安: 西安电子科技大学出版社, 2007.
[11] 马知恩,周义仓. 常微分方程定性与稳定性方法[M]. 北京: 科学出版社, 2007.
[12] Kuznetsov Y. Elements of Applied Bifurcation Theory[M]. New York: Springer-Verlag, 1995.