|Table of Contents|

Analysis of a Predatro-Prey Model With a Saturated Infection Rate(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2011年03期
Page:
25-31
Research Field:
数学
Publishing date:

Info

Title:
Analysis of a Predatro-Prey Model With a Saturated Infection Rate
Author(s):
Xing LingLiu Xuanliang
College of Science,South China University of Technology,Guangzhou 510640,China
Keywords:
predator-prey modelboundedness center manifold stability
PACS:
O175.14
DOI:
-
Abstract:
In this paper,we study the predator-prey model with disease in the prey. Assume that the predator eats only the infected prey, and the incidence rate of disease is saturated. First of all,we study the boundedness of solutions, then we discuss the existence of equilibrium and its stability, and obtain the global stabilities of boundary equilibrium and positive equilibrium.

References:

[1] Chattopadhyay J,Arino O. A predator-prey model with disease in the prey[J]. Nonlinear Analysis, 1999,36( 6) : 747-766.
[2] Xiao Y,Chen L. Analysis of a three species eco-epidemiological model[J]. Journal of Mathematical Analysis and Applications, 2001, 258( 2) : 733-754.
[3] Xiao Yanli,Chen Lansun. A ratio-dependent predator-prey model with disease in the prey[J]. Applied Mathematics and Computation,2002, 131( 2) : 397-414.
[4] Hethcote H W,Wang W,Han L,et al. A predator-prey model with infected prey[J]. Theoretical Population Biology,2004, 66( 3) : 259-268.
[5] Regoes R R,Ebert D,Bonhoeffer A. Dose-dependent infection rates of parasites produce the Allee effect in epidemiology[J]. Proc Roy Soc Lond,2002, 269( 1 488) : 271-279.
[6] Li Guihua,Wang Wendi. Bifurcation analysis of an epidemic model with nonlinear incidence[J]. Applied Mathematics and Computation,2009, 214( 2) : 411-423.
[7] Liu W M,Levin S A, Iwasa Y L. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models [J]. Math Biol,1986, 23( 2) : 187-204.
[8] 徐为坚. 具有种群Logistic 增长及饱和传染率的SIS 模型的稳定性和Hopf 分支[J]. 数学物理学报,2008,28( 3) : 578-584.
[9] Ruan Shigui,Wang Wendi. Dynamical behavior of an epidemic model with a nonlinear incidence rate[J]. Differential Equations, 2003, 188( 1) : 135-163.
[10] 贺昱曜,闫茂德. 非线性控制理论及应用[M]. 西安: 西安电子科技大学出版社, 2007.
[11] 马知恩,周义仓. 常微分方程定性与稳定性方法[M]. 北京: 科学出版社, 2007.
[12] Kuznetsov Y. Elements of Applied Bifurcation Theory[M]. New York: Springer-Verlag, 1995.

Memo

Memo:
-
Last Update: 2011-09-15